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Introduction to Probability Theory



Probability as an Extension of 
Boolean Logic





Probability

Consider the logical statements

𝑅 = "𝐼𝑡 𝑖𝑠 𝑟𝑎𝑖𝑛𝑖𝑛𝑔! "

¬𝑅 = "𝐼𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑎𝑖𝑛𝑖𝑛𝑔! "

𝑅 ∨ ¬𝑅 → 𝑅

While it is clear that

However 𝑅 ∨ ¬𝑅 ↛ 𝑅

But we might like to quantify 
the degree to which𝑅 → 𝑅 ∨ ¬𝑅

We will define a function called probability, denoted 𝑝 𝐴 𝐵), that quantifies the 
degree to which the logical statement 𝑩 implies the logical statement 𝑨. 



Probability

The limits of probability are defined by Boolean logic and certainty.

If the logical statement 𝐵 implies the logical statement 𝐴 then 𝑃 𝐴 𝐵 ) = 1.

If the logical statements 𝐴 and 𝐵 are disjoint, such that  𝐴 ∧ 𝐵 = ∅, then 𝑃 𝐴 𝐵 ) = 0.

For non-disjoint 𝐴 and 𝐵 (𝐴 ∧ 𝐵 ≠ ∅), we have that 0 < 𝑃 𝐴 𝐵 ) ≤ 1.

A logical statement implies itself, so that 𝑃 𝐴 𝐴 ) = 1.

Since 𝐴 → 𝐴 ∨ 𝑋, we have that 𝑃 𝐴 ∨ 𝑋 A) = 1.

Of course, one can rescale the probability function.  
The use of percentages is a common example.



The Sum and Product Rules



Associativity of Logical OR

𝑣 𝑋 ∨ 𝑌 = 𝑣 𝑋 + 𝑣 𝑌

For disjoint 𝑋, 𝑌, and 𝑍

Knuth, K.H. and Skilling, J., 2012. Foundations of inference. 
Axioms, 1(1), pp.38-73.
Knuth, K.H., 2019. Lattices and their consistent quantification. 
Annalen der Physik, 531(3), p.1700370.

𝑋 ∨ 𝑌 ∨ 𝑍 = 𝑋 ∨ (𝑌 ∨ 𝑍)

implies that any measure1 𝑣 then obeys

1. 𝑣 is a function that takes an element 𝑋 to a real number

https://www.mdpi.com/2075-1680/1/1/38
https://arxiv.org/abs/1711.07358


Sum Rule

𝑋 ∨ 𝑌

𝑋 𝑌

For disjoint 𝑋 and 𝑌

Knuth, K.H., 2019. Lattices and their consistent quantification. 
Annalen der Physik, 531(3), p.1700370.

𝑣 𝑋 ∨ 𝑌 = 𝑣 𝑋 + 𝑣 𝑌

https://arxiv.org/abs/1711.07358


Sum Rule

For disjoint A and B, we have that 

𝑝 𝐴 ∨ 𝐵 𝐼) = 𝑝 𝐴 𝐼) + 𝑝 𝐵 𝐼)

𝐴 𝐵

𝑝 𝐴 𝐼) =
5

15
𝑝 𝐵 𝐼) =

4

15

𝑝 𝐴 ∨ 𝐵 𝐼) =
5

15
+

4

15
=

9

15



Sum Rule

𝑋 ∨ 𝑌

𝑋 ∧ 𝑌

𝑋 𝑌

𝑍

𝑣 𝑌 = 𝑣 𝑋 ∧ 𝑌 + 𝑣 𝑍 𝑣 𝑋 ∨ 𝑌 = 𝑣 𝑋 + 𝑣 𝑍

𝑣 𝑋 ∨ 𝑌 = 𝑣 𝑋 + 𝑣 𝑌 − 𝑣 𝑋 ∧ 𝑌

In General

Knuth, K.H., 2019. Lattices and their consistent quantification. 
Annalen der Physik, 531(3), p.1700370.

https://arxiv.org/abs/1711.07358


Sum Rule

For general A and B, we have that 

𝑝 𝐴 ∨ 𝐵 𝐼) = 𝑝 𝐴 𝐼) + 𝑝 𝐵 𝐼) − 𝑝 𝐴 ∧ 𝐵 𝐼)

𝐴 𝐵

𝑝 𝐴 𝐼) =
6

15
𝑝 𝐵 𝐼) =

7

15

𝑝 𝐴 ∨ 𝐵 𝐼) =
6

15
+

7

15
−

2

15
=

11

15

𝑝 𝐴 ∧ 𝐵 𝐼) =
2

15



Sum Rule

𝑣 𝑋 ∨ 𝑌 = 𝑣 𝑋 + 𝑣 𝑌 − 𝑣 𝑋 ∧ 𝑌

𝑋 ∨ 𝑌

𝑋 ∧ 𝑌

𝑋 𝑌

𝑣 𝑋 ∨ 𝑌 + 𝑣 𝑋 ∧ 𝑌 = 𝑣 𝑋 + 𝑣 𝑌

Knuth, K.H., 2019. Lattices and their consistent quantification. 
Annalen der Physik, 531(3), p.1700370.

https://arxiv.org/abs/1711.07358


Context and Bi-Valuations Knuth, K.H., 2009, December. Measuring on lattices. In AIP 
Conference Proceedings (Vol. 1193, No. 1, pp. 132-144). 
American Institute of Physics.

𝑋 ∨ 𝑌

𝑋 𝑌 𝑍

𝑋 ∨ 𝑍 𝑌 ∨ 𝑍

𝑋 ∨ 𝑌 ∨ 𝑍

Implication is
directed upward

(eg. 𝑋 implies 𝑋 ∨ 𝑌)

We would like to 
quantify the degree

to which the statement
𝑋 ∨ 𝑌 ∨ 𝑍 implies 

the statement 𝑋

Define a function
𝑤 𝑋 𝑋 ∨ 𝑌 ∨ 𝑍 )

The statement on the
right of the solidus (|) is

called the CONTEXT.

The function 𝑤 is called a
bi-valuation because it takes

two statements to a real number.

http://knuthlab.rit.albany.edu/papers/knuth-me09-pub.pdf


Sum Rule

𝑤 𝑋 ∨ 𝑌 | 𝑍 = 𝑤 𝑋 | 𝑍 + 𝑤 𝑌 | 𝑍 − 𝑤 𝑋 ∧ 𝑌 | 𝑍

For a constant context, the Sum Rule holds for bi-valuations2

Knuth, K.H., 2009, December. Measuring on lattices. In AIP 
Conference Proceedings (Vol. 1193, No. 1, pp. 132-144). 
American Institute of Physics.

𝑝 𝐴 ∨ 𝐵 𝐼) = 𝑝 𝐴 𝐼) + 𝑝 𝐵 𝐼) − 𝑝 𝐴 ∧ 𝐵 𝐼)

In the case of probability, this is

2. 𝑤 is a function that takes two elements to a real number.  
The second number (to the right of the solidus | is referred to as the context.

http://knuthlab.rit.albany.edu/papers/knuth-me09-pub.pdf


Associativity of Chaining of Context Knuth, K.H. and Skilling, J., 2012. Foundations of inference. 
Axioms, 1(1), pp.38-73.
Knuth, K.H., 2019. Lattices and their consistent quantification. 
Annalen der Physik, 531(3), p.1700370.

𝑋

𝑌

𝑍

𝑊

𝑋

𝑌

𝑍

𝑊

associativity of 
changing context

https://www.mdpi.com/2075-1680/1/1/38
https://arxiv.org/abs/1711.07358


Chain Rule Knuth, K.H. and Skilling, J., 2012. Foundations of inference. 
Axioms, 1(1), pp.38-73.
Knuth, K.H., 2019. Lattices and their consistent quantification. 
Annalen der Physik, 531(3), p.1700370.

𝑋

𝑌

𝑍

𝑊

𝑋

𝑌

𝑍

𝑊

𝑤 𝑊| 𝑍 = 𝑤 𝑊 | 𝑌 𝑤 𝑌 | 𝑍 = 𝑤 𝑊 𝑋) 𝑤 𝑋 𝑍)

associativity of 
changing context

https://www.mdpi.com/2075-1680/1/1/38
https://arxiv.org/abs/1711.07358


Chain Rule for Probability Knuth, K.H. and Skilling, J., 2012. Foundations of inference. 
Axioms, 1(1), pp.38-73.
Knuth, K.H., 2019. Lattices and their consistent quantification. 
Annalen der Physik, 531(3), p.1700370.

𝑝 𝑊| 𝑍 = 𝑝 𝑊 | 𝑌 𝑝 𝑌 | 𝑍
= 𝑝 𝑊 𝑋) 𝑝 𝑋 𝑍)

𝑍

𝑊

𝑋

𝑌

𝑝 𝑊 𝑋) =
3

5

𝑝 𝑊 𝑌) =
3

9

𝑝 𝑋 𝑍) =
5

14

𝑝 𝑌 𝑍) =
9

14

𝑝 𝑊 𝑍) =
3

14
=

3

9
∙
9

14
=

3

5
∙
5

14

𝑍 ⊇ 𝑌 ⊇ 𝑋 ⊇ 𝑊

https://www.mdpi.com/2075-1680/1/1/38
https://arxiv.org/abs/1711.07358


Knuth, K.H., 2009, December. Measuring on lattices. In AIP 
Conference Proceedings (Vol. 1193, No. 1, pp. 132-144). 
American Institute of Physics.

Consider this with context 𝑋

𝑋 ∨ 𝑌

𝑋 ∧ 𝑌

𝑋 𝑌

𝑝 𝑋 ∨ 𝑌 𝑋) = 𝑝 𝑋 𝑋) + 𝑝 𝑌 𝑋) − 𝑝 𝑋 ∧ 𝑌 𝑋)

Since 𝑋 → 𝑋 ∨ 𝑌, we have 𝑝 𝑋 ∨ 𝑌 𝑋) = 1

Since 𝑋 → 𝑋, we have 𝑝 𝑋 𝑋) = 1

1 = 1 + 𝑝 𝑌 𝑋) − 𝑝 𝑋 ∧ 𝑌 𝑋)

𝑝 𝑌 𝑋) = 𝑝 𝑋 ∧ 𝑌 𝑋)

http://knuthlab.rit.albany.edu/papers/knuth-me09-pub.pdf


Knuth, K.H., 2009, December. Measuring on lattices. In AIP 
Conference Proceedings (Vol. 1193, No. 1, pp. 132-144). 
American Institute of Physics.

Consider this with context 𝑋

𝑝 𝑋 ∨ 𝑌 𝑋) = 𝑝 𝑋 𝑋) + 𝑝 𝑌 𝑋) − 𝑝 𝑋 ∧ 𝑌 𝑋)

Since 𝑋 → 𝑋 ∨ 𝑌, we have 𝑝 𝑋 ∨ 𝑌 𝑋) = 1

Since 𝑋 → 𝑋, we have 𝑝 𝑋 𝑋) = 1

1 = 1 + 𝑝 𝑌 𝑋) − 𝑝 𝑋 ∧ 𝑌 𝑋)

𝑝 𝑌 𝑋) = 𝑝 𝑋 ∧ 𝑌 𝑋)

𝑋 ∨ 𝑌

𝑋 ∧ 𝑌

𝑋 𝑌

We will be using this result in the derivation that follows.

http://knuthlab.rit.albany.edu/papers/knuth-me09-pub.pdf


The Product Rule

𝑋 ∨ 𝑌

𝑋 ∧ 𝑌

𝑋 𝑌

𝑌 ∧ 𝑍

𝑍

𝑌 ∧ 𝑍

𝑋 ∨ 𝑌 ∨ 𝑍

𝑋 ∧ 𝑌 ∧ 𝑍

𝑝 𝑋 ∧ 𝑌 ∧ 𝑍 | 𝑋 = 𝑝 𝑋 ∧ 𝑌 ∧ 𝑍|𝑋 ∧ 𝑌 𝑝 𝑋 ∧ 𝑌| 𝑋

Knuth, K.H., 2009, December. Measuring on lattices. In AIP 
Conference Proceedings (Vol. 1193, No. 1, pp. 132-144). 
American Institute of Physics.

http://knuthlab.rit.albany.edu/papers/knuth-me09-pub.pdf


The Product Rule

𝑋 ∨ 𝑌

𝑋 𝑌

𝑌 ∧ 𝑍

𝑍

𝑌 ∧ 𝑍

𝑋 ∨ 𝑌 ∨ 𝑍

𝑋 ∧ 𝑌 ∧ 𝑍

𝑋 ∧ 𝑌

𝑝 𝑋 ∧ 𝑌 ∧ 𝑍 | 𝑋 = 𝑝 𝑋 ∧ 𝑌 ∧ 𝑍|𝑋 ∧ 𝑌 𝑝 𝑋 ∧ 𝑌| 𝑋

𝑝 𝑋 ∧ 𝑌 ∧ 𝑍 | 𝑋 = 𝑝 𝑋 ∧ 𝑌 ∧ 𝑍|𝑋 ∧ 𝑌 𝑝 𝑌| 𝑋

𝑝 𝑋 ∧ 𝑌 ∧ 𝑍 | 𝑋 = 𝑝 𝑍 |𝑋 ∧ 𝑌 𝑝 𝑌| 𝑋

𝑝 𝑋 ∧ 𝑌 ∧ 𝑍 | 𝑋 = 𝑝 𝑍 |𝑋 ∧ 𝑌 𝑝 𝑌| 𝑋

𝑝 𝑌 ∧ 𝑍 | 𝑋 = 𝑝 𝑍 |𝑋 ∧ 𝑌 𝑝 𝑌| 𝑋

Changing notation and rearranging

𝑝 𝑌, 𝑍 | 𝑋 = 𝑝 𝑌| 𝑋 𝑝 𝑍 |𝑋, 𝑌

Knuth, K.H., 2009, December. Measuring on lattices. In AIP 
Conference Proceedings (Vol. 1193, No. 1, pp. 132-144). 
American Institute of Physics.

http://knuthlab.rit.albany.edu/papers/knuth-me09-pub.pdf


Sum and Product Rules

𝑝 𝐴 ∨ 𝐵 𝐼) = 𝑝 𝐴 𝐼) + 𝑝 𝐵 𝐼) − 𝑝 𝐴 ∧ 𝐵 𝐼) Sum Rule

Product Rule𝑝 𝐴, 𝐵| 𝐼 = 𝑝 𝐵 | 𝐼 𝑝 𝐴 | 𝐵, 𝐼
= 𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)



Sum and Product Rules

𝑝 𝐴 ∨ 𝐵 𝐼) = 𝑝 𝐴 𝐼) + 𝑝 𝐵 𝐼) − 𝑝 𝐴 ∧ 𝐵 𝐼) Sum Rule

Product Rule𝑝 𝐴, 𝐵| 𝐼 = 𝑝 𝐵 | 𝐼 𝑝 𝐴 | 𝐵, 𝐼
= 𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)

𝑝 𝐵 | 𝐼 𝑝 𝐴 | 𝐵, 𝐼 = 𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)



Sum and Product Rules

𝑝 𝐴 ∨ 𝐵 𝐼) = 𝑝 𝐴 𝐼) + 𝑝 𝐵 𝐼) − 𝑝 𝐴 ∧ 𝐵 𝐼) Sum Rule

Product Rule

𝑝 𝐴 | 𝐵, 𝐼 =
𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)

𝑝 𝐵 | 𝐼

𝑝 𝐴, 𝐵| 𝐼 = 𝑝 𝐵 | 𝐼 𝑝 𝐴 | 𝐵, 𝐼
= 𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)

𝑝 𝐵 | 𝐼 𝑝 𝐴 | 𝐵, 𝐼 = 𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)



Sum and Product Rules + Bayes Theorem

𝑝 𝐴 ∨ 𝐵 𝐼) = 𝑝 𝐴 𝐼) + 𝑝 𝐵 𝐼) − 𝑝 𝐴 ∧ 𝐵 𝐼) Sum Rule

Product Rule

Bayes Theorem

𝑝 𝐴, 𝐵| 𝐼 = 𝑝 𝐵 | 𝐼 𝑝 𝐴 | 𝐵, 𝐼
= 𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)

𝑝 𝐴 | 𝐵, 𝐼 =
𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)

𝑝 𝐵 | 𝐼



Bayes Theorem
Bayes Theorem

𝐴 𝐵

𝑝 𝐴 𝐼) =
11

20

𝑝 𝐵 𝐼) =
15

20

𝑝 𝐵 𝐴, 𝐼) =
6

11

𝑝 𝐴 𝐵, 𝐼) =
6

15

𝑝 𝐴 𝐵, 𝐼) =
6

15
=

6

11
∙
11

20
15

20

𝑝 𝐴 | 𝐵, 𝐼 =
𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)

𝑝 𝐵 | 𝐼



Bayes Theorem

Bayes Theorem

𝑝 𝑚𝑜𝑑𝑒𝑙 | 𝑑𝑎𝑡𝑎, 𝐼 =
𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼) 𝑝 𝑑𝑎𝑡𝑎 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑𝑎𝑡𝑎 | 𝐼

𝐴 → 𝑚𝑜𝑑𝑒𝑙
𝐵 → 𝑑𝑎𝑡𝑎

𝑝 𝐴 | 𝐵, 𝐼 =
𝑝 𝐴 𝐼) 𝑝 𝐵 𝐴, 𝐼)

𝑝 𝐵 | 𝐼



Bayes Theorem

𝑝 𝑚𝑜𝑑𝑒𝑙 | 𝑑𝑎𝑡𝑎, 𝐼 =
𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼) 𝑝 𝑑𝑎𝑡𝑎 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑𝑎𝑡𝑎 | 𝐼

Prior Probability: The probability of the model based only on one’s prior information

Likelihood: The probability that the data could have been observed given the model

Evidence: The probability that the data could have been observed based only on the prior information
This term often serves as a normalization factor

Posterior Probability: The probability of the model based both on the prior information and the data



Bayes’ Theorem as a Learning Rule



Bayes Theorem as a Learning Rule

𝑝 𝑚𝑜𝑑𝑒𝑙 | 𝑑𝑎𝑡𝑎, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼)
𝑝 𝑑𝑎𝑡𝑎 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑𝑎𝑡𝑎 | 𝐼

One’s prior belief about a model (prior probability) is modified by 
a data-dependent term resulting in the posterior probability, which 
describes one’s state of belief considering both prior information and data  

Data-dependent Term



Parallel versus Sequential Learning

Consider that we have 𝑁 pieces of independent data:  𝑑1, 𝑑2, ⋯ , 𝑑𝑁

We can consider the data as a compound logical statement 𝐷 = 𝑑1 ∧ 𝑑2 ∧ ⋯ ∧ 𝑑𝑁
and use Bayes’ Theorem

𝑝 𝑚𝑜𝑑𝑒𝑙 | 𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼)
𝑝 𝐷 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝐷 | 𝐼

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼)
𝑝 𝑑1 ∧ 𝑑2 ∧ ⋯ ∧ 𝑑𝑁 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑1 ∧ 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝐼

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼)
𝑝 𝑑1 𝑚𝑜𝑑𝑒𝑙, 𝐼) 𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝑚𝑜𝑑𝑒𝑙, 𝐼

𝑝 𝑑1 𝐼) 𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝐼

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼)
𝑝 𝑑1 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑1 𝐼)

𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝑚𝑜𝑑𝑒𝑙, 𝐼

𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝐼

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝑑1, 𝐼)
𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝑚𝑜𝑑𝑒𝑙, 𝐼

𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝐼

apply the product rule

The posterior for 𝑑1
can serve as the
prior for the 
remaining data

Data are considered in parallel



Parallel versus Sequential Learning

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝑑1, 𝐼)
𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝑚𝑜𝑑𝑒𝑙, 𝐼

𝑝 𝑑2 ∧ ⋯ ∧ 𝑑𝑁| 𝐼

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝑑1, 𝐼)
𝑝 𝑑2 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑2 𝐼)

𝑝 𝑑3 ∧ ⋯ ∧ 𝑑𝑁| 𝑚𝑜𝑑𝑒𝑙, 𝐼

𝑝 𝑑3 ∧ ⋯ ∧ 𝑑𝑁| 𝐼

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝑑1, 𝐼)
𝑝 𝑑2 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑2 𝐼)

𝑝 𝑑3 ∧ ⋯ ∧ 𝑑𝑁| 𝑚𝑜𝑑𝑒𝑙, 𝐼

𝑝 𝑑3 ∧ ⋯ ∧ 𝑑𝑁| 𝐼

⋮

𝑝 𝑚𝑜𝑑𝑒𝑙 |𝐷, 𝐼 = 𝑝 𝑚𝑜𝑑𝑒𝑙 𝐼)
𝑝 𝑑1 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑1 𝐼)

𝑝 𝑑2 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑2 𝐼)
⋯
𝑝 𝑑𝑁 𝑚𝑜𝑑𝑒𝑙, 𝐼)

𝑝 𝑑𝑁 𝐼)

where the data are considered sequentially.

The posterior at each step is then used as the prior for the next step.



Normalization and Marginalization



Normalization

Recall that probability is normalized so that the sum of the probability over all
possibilities is equal to 1.

Let 𝑎1, 𝑎2, ⋯ , 𝑎𝑁 be an exhaustive set of mutually exclusive logical statements

Since the set is exhaustive, the statement 𝑎1 ∨ 𝑎2 ∨ ⋯ ∨ 𝑎𝑁 is known to be TRUE.

𝑝(𝑎1 ∨ 𝑎2 ∨ ⋯ ∨ 𝑎𝑁 𝐼 = 1

Applying the sum rule

𝑝(𝑎1 𝐼 + 𝑝 𝑎2 𝐼) + ⋯+ 𝑝(𝑎𝑁 𝐼 = 1



𝑖=1

𝑁

𝑝(𝑎𝑖 𝐼 = 1



Summation with Multiple Parameters

Let 𝑏1, 𝑏2, ⋯ , 𝑏𝑀 be an exhaustive set of mutually exclusive logical statements.

Look at



𝑘=1

𝑀

𝑝(𝑎, 𝑏𝑘| 𝐼) = 

𝑘=1

𝑀

𝑝 𝑎 𝐼) 𝑝 𝑏𝑘 𝑎, 𝐼)

= 𝑝 𝑎 𝐼)

𝑘=1

𝑀

𝑝(𝑏𝑘|𝑎, 𝐼)

= 𝑝 𝑎 𝐼) ∙ 1



𝑘=1

𝑀

𝑝(𝑎, 𝑏𝑘| 𝐼) = 𝑝 𝑎 𝐼)



Marginalization

Let 𝑏1, 𝑏2, ⋯ , 𝑏𝑀 be an exhaustive set of mutually exclusive logical statements.

𝑝(𝑎 | 𝐼) = 

𝑘=1

𝑀

𝑝(𝑎, 𝑏𝑘| 𝐼)

This technique is called MARGINALIZATION.

Using the Sum Rule, one can MARGINALIZE
over one of the parameters to obtain the 
probability of the remaining parameters.

This allows one to get rid of uninteresting parameters 
thus reducing the dimensionality of the problem.



Marginalization

Consider rolling two six-sided dice (𝐴 and 𝐵), each with probabilities 𝑝 𝑎𝑖 𝐼) = 𝑝 𝑏𝑘 𝐼) =
1

6

𝑝 𝑎𝑖 , 𝑏𝑘 𝐼) = 𝑝 𝑎𝑖 𝐼) 𝑝 𝑏𝑘 𝐼)

=
1

6
∙
1

6
=

1

36

b

a

1 2 3 4 5 6

1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36

𝑝 𝑎𝑖 , 𝑏𝑘 𝐼) = 𝑝 𝑎𝑖 𝐼) 𝑝 𝑏𝑘 𝐼)

𝐴

𝐵



𝐴

𝐵

Marginalization

Consider rolling two six-sided dice (𝐴 and 𝐵), each with probabilities 𝑝 𝑎𝑖 𝐼) = 𝑝 𝑏𝑘 𝐼) =
1

6

b

a

1 2 3 4 5 6
𝑝 𝑎𝑖 𝐼)

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6

2 1/36 1/36 1/36 1/36 1/36 1/36 1/6

3 1/36 1/36 1/36 1/36 1/36 1/36 1/6

4 1/36 1/36 1/36 1/36 1/36 1/36 1/6

5 1/36 1/36 1/36 1/36 1/36 1/36 1/6

6 1/36 1/36 1/36 1/36 1/36 1/36 1/6

𝑝 𝑎𝑖 , 𝑏𝑘 𝐼) = 𝑝 𝑎𝑖 𝐼) 𝑝 𝑏𝑘 𝐼)

=
1

6
∙
1

6
=

1

36

SUM OVER THE POSSIBLE FACES OF DIE 𝐵



𝑘=1

𝑀

𝑝(𝑎𝑖 , 𝑏𝑘| 𝐼) = 𝑝 𝑎𝑖 𝐼)

𝑝 𝑎𝑖 , 𝑏𝑘 𝐼) = 𝑝 𝑎𝑖 𝐼) 𝑝 𝑏𝑘 𝐼)

This is called MARGINALIZATION because it
used to be computed by summing and writing
the result in the MARGIN of the paper.


