Automating Science

Kevin H. Knuth
Departments of Physics and Informatics
University at Albany

Supported by:
NASA Applied Information Systems Research Program (AISRP)
NASA Applied Information Systems Technology Program (AIST)
Massive Data Collection

NASA Earth Observatories

3 Terabytes of data per day. Storage approaching 10 Petabytes
Massive Data Collection

Solar Dynamics Observatory
1.5 Terabytes per day
0.75 Petabytes per year
The Data Fire Hose
Focused Exploration

Mars Exploration Rovers: Spirit and Opportunity
128 kilobits per second / 10 Megabytes per day
Mars Exploration Rover Mission Control

Event: MER Mission Activities
Date: Spirit Sol 4
Source: Kris Becker
Time Constraints and Human Intervention

6 to 44 minute round-trip communication delay
Missions to Jupiter’s Moons

60 to 100 minute round-trip communication delay
Missions to Saturn’s Moons

2.3 – 3 hour round-trip communication delay
The Scientific Method

Hypothesis Generation
Generate New Hypotheses

Inference
Update Model from Data
Estimate Uncertainties

Model Testing

Experimental Design

Inquiry
Select Relevant Question
Evaluate Uncertainties

Perform Experiment

6 February 2009
Kevin H Knuth
CESS 2009
The Scientific Method
The Scientific Method

DATA

ANALYSIS

Hypothesis Generation

Generate New Hypothesis

Experimental Design

Inquiry

Select Relevant Question

Evaluate Uncertainties

Model Testing

Inference

Update Model from Data

Estimate Uncertainties

Perform Experiment

CAN WE AUTOMATE INQUIRY?

Kevin H Knuth

CESS 2009
Describing the World
Partially Ordered Sets

Choosing a Piece of Fruit

a b c

apple banana cherry
States describe Systems

Antichain
Exp and Log

\[\overline{N} \]

\[2^N \]

\[\{a, b, c\} \]
\[\{a, b\} \]
\[\{a, c\} \]
\[\{b, c\} \]
\[\{a\} \]
\[\{b\} \]
\[\{c\} \]
\[\emptyset \]
Exp and Log

\[\overline{N} \]

\[2^N \]

\[a \oplus \{a\} \]

\[a \vee b \oplus \{a, b\} \]

\[\rightarrow \oplus \subseteq \]
Exp and Log

N

2^N

States

Statements (sets of states) (potential states)
Three Spaces

\[\bar{N} \]

\[2^N \]

\[a \lor b \lor c \]

\[a \lor b = \{a, b\} \]

\[a = \{a\} \]

\[A \lor B \lor C \]

\[A = \{a\} \]

\[A \lor B = \{a, b, a \lor b\} \]
Three Spaces

\[\overline{N} \]

\[2^N \]

\[FD(N) \]

States

Statements

(sets of states)

(potential states)

Questions

(sets of statements)

(potential statements)
State Space

apple banana cherry

States describe Systems
Antichain
Hypothesis Space

Statements are sets of States

Boolean Lattice
Inquiry Space

Questions are sets of Statements

Free Distributive Lattice
Central Issue
“Is it an Apple, Banana, or Cherry?”

Relevance

“Is it an Apple or Cherry, or is it a Banana or Cherry?”

“Is it an Apple?”

Relevance Decreases
The Central Issue

$I = \text{“Is it an Apple, Banana, or Cherry?”}$

This question is answered by the following set of statements:

$I = \{ a = \text{“It is an Apple!”}, \\
 b = \text{“It is a Banana!”}, \\
 c = \text{“It is a Cherry!”} \}$

$I = \{ a, b, c \}$
Some Questions Answer Others

Now consider the binary question

\[B = \text{“Is it an Apple?”} \]

\[B = \{ a = \text{“It is an Apple!”}, \sim a = \text{“It is not an Apple!”} \} \]

\[B = \{ a, b \lor c, b, c \} \]

As the defining set of \(I \) is exhaustive, \(\sim a = b \lor c \)
Ordering Questions

$I = \text{“Is it an Apple, Banana, or Cherry?”}\\
I = \{a, b, c\}$

$B = \text{“Is it an Apple?”}\\
B = \{a, b \lor c, b, c\}$

$I \subseteq B$

I answers B

B includes I
Valuations on Lattices
Valuations

Valuations are functions that take lattice elements to real numbers

Valuation: $v : x \in L \rightarrow \mathbb{R}$
Valuations

Valuations are functions that take lattice elements to real numbers.

Valuation: \(v : x \in L \rightarrow \mathbb{R} \)

How do we ensure that the valuation assignments are consistent with the lattice structure?
Local Consistency

Any general rule must hold for special cases.

Look at special cases to constrain general rule.

We enforce local consistency.

\[
\begin{align*}
 v(a \lor b) & \iff v(a) \quad \text{and} \quad v(b) \\
 v(a \lor b) & = S[v(a), v(b)]
\end{align*}
\]
Associativity of Join V

Write the same element two different ways

\[a \lor (b \lor c) = (a \lor b) \lor c \]

This implies that:

\[S[v(a), S[v(b), v(c)]] = S[S[v(a), v(b)], v(c)] \]
Associativity of Join V

Write the same element two different ways

\[a \lor (b \lor c) = (a \lor b) \lor c \]

This implies that:

\[S[v(a), S[v(b), v(c)]] = S[S[v(a), v(b)], v(c)] \]

The general solution (Aczel) is:

\[F(S[v(a), v(b)]) = F(v(a)) + F(v(b)) \]
\[m(a \lor b) = m(a) + m(b) \]

DERIVATION OF MEASURE THEORY!
Sum Rule

This result is known more generally as the SUM RULE

\[m(x \lor y) = m(x) + m(y) - m(x \land y) \]
Context and Bi-Valuations

Bi-Valuation: \(w: x, y \in L \rightarrow \mathbb{R} \)

Bi-Valuation

\[w(x \mid y) \rightarrow v_y(x) \rightarrow v(x) \]

Valuation

Context \(y \) is explicit

Measure of \(x \) with respect to context \(y \)

Context \(y \) is implicit

Bi-valuations generalize lattice inclusion to degrees of inclusion.

The bi-valuation inherits meaning from the ordering relation!
Associativity of Context

\[
\begin{align*}
 w(a \mid t) &= P[w(a \mid c), w(c \mid t)] \\
 w(a \mid t) &= P[w(a \mid b), w(b \mid t)] \\
 P[P[w(a \mid b), w(b \mid c)], w(c \mid t)] &= P[w(a \mid b), P[w(b \mid c), w(c \mid t)]]
\end{align*}
\]

The Result:

\[
G(P[w(a \mid c), w(c \mid t)]) = G(w(a \mid c)) + G(w(c \mid t))
\]

\[
m(a \mid t) = m(a \mid c) m(c \mid t)
\]

Product Rule!
Product Rule and Context

\[m(a \mid t) = m(a \mid c) m(c \mid t) \]

Ratios of Measures

\[m(a \mid c) = \frac{m(a \mid t)}{m(c \mid t)} \]

In General: Two Product Rules

\[m(a \land c \mid t) = m(a \mid c \land t) m(c \mid t) \]

\[m(a \mid c \lor t) = m(a \mid c) m(a \lor c \mid t) \]
Commutativity

Commutativity $x \land y = y \land x$ leads to a **Bayes Theorem**...

$$m(x \mid y \land t) = \frac{m(x \mid t) m(y \mid x \land t)}{m(y \mid t)}$$

Note that Bayes Theorem involves a change of context. **Valuations are not sufficient**… need bi-valuations.
Inclusion-Exclusion (The Sum Rule)

\[w(x \lor y \mid t) = w(x \mid t) + w(y \mid t) - w(x \land y \mid t) \]

The Sum Rule for Lattices
Inclusion-Exclusion (The Sum Rule)

\[w(x \lor y \mid t) = w(x \mid t) + w(y \mid t) - w(x \land y \mid t) \]

\[p(x \lor y \mid i) = p(x \mid i) + p(y \mid i) - p(x \land y \mid i) \]

The Sum Rule for Probability
Inclusion-Exclusion (The Sum Rule)

\[w(x \lor y \mid t) = w(x \mid t) + w(y \mid t) - w(x \land y \mid t) \]

\[I(X;Y) = H(X) + H(Y) - H(X,Y) \]

Definition of Mutual Information
Inclusion-Exclusion (The Sum Rule)

\[w(x \lor y \mid t) = w(x \mid t) + w(y \mid t) - w(x \land y \mid t) \]

\[\max(x, y) = x + y - \min(x, y) \]

Polya's Min-Max Rule for Integers
Inclusion-Exclusion (The Sum Rule)

\[w(x \lor y \mid t) = w(x \mid t) + w(y \mid t) - w(x \land y \mid t) \]

\[\log(\gcd(x, y)) = \log(x) + \log(y) - \log(\text{lcm}(x, y)) \]

“Measuring Integers”, Knuth 2009

The Sum Rule derives from the Möbius function of the lattice, And is related to its Zeta function
Probability

Probabilities are degrees of implication!

\[w(a \mid t) \equiv p(a \mid t) \]

Constraint Equations!

\[p(x \lor y \mid i) = p(x \mid i) + p(y \mid i) - p(x \land y \mid i) \]
\[p(x \land y \mid i) = p(x \mid i) \cdot p(y \mid x \land i) \]
\[p(x \mid y \land t) = \frac{p(x \mid t)p(y \mid x \land t)}{p(y \mid t)} \]
Relevance

Relevance quantifies the degree to which one question answers another

\[d(I \mid A) \]

Constraint Equations

\[d(I \mid A \lor B) = d(I \mid A) + d(I \mid B) - d(I \mid A \land B) \]

\[d(I \mid A \lor B) = d(I \mid A) d(A \lor I \mid B) \]

\[d(A \mid B) = \frac{d(I \mid B)d(B \mid A)}{d(I \mid A)} \]
The degree to which one question answers another must depend on the probabilities of the possible answers.
Relevance

\[d(I \mid Q) = aH(Q) + b \]

\[= -a \sum_{i=1}^{n} p_i \log_2 p_i + b \]
Relevance and Entropy

\[d(I \mid Q) \]

\[H(I) = -p_a \log_2 p_a - p_b \log_2 p_b - p_c \log_2 p_c \]
Higher-Order Informations

\[d(I \mid AC \cup BC) = d(I \mid B \cup AC) + d(I \mid A \cup BC) - d(I \mid (B \cup AC) \wedge (A \cup BC)) \]

\[d(I \mid AC \cup BC) \sim I(B \cup AC; A \cup BC) \]

This relevance is related to the mutual information.

In this way one can obtain higher-order informations.
Partition Questions

Relevance is only a valid measure on the sublattice of questions isomorphic to partitions.
EXAMPLE
Guessing Game

apple banana cherry

Can only ask binary (YES or NO) questions!
Which Question to Ask?

Is it or is it not an Apple?
Is it or is it not a Banana?
Is it or is it not a Cherry?

If you believe that there is a 75% chance that it is an Apple, and a 10% chance that it is a Banana, which question do you ask?
Relevance Depends on Probability

If you believe that there is a 75% chance that it is an Apple, and a 10% chance that it is a Banana, which question do you ask?
Relevance Depends on Probability

If you believe that there is a 75% chance that it is an Apple, and a 10% chance that it is a Banana, which question do you ask?
EXPERIMENTAL DESIGN
Doppler Shift

PROBLEM:
Determine the relative radial velocity relative to a Sodium lamp. We can measure light intensities near the doublet at 589 nm and 589.6 nm.

We can take ONE MEASUREMENT
Which wavelength shall we examine?

Recall, we don’t know the Doppler shift!
What Can We Ask?

The question that can be asked is:

“What is the intensity at wavelength \(\lambda \)?”

There are many questions to choose from, each
corresponding to a different wavelength \(\lambda \)
What are the Possible Answers?

Say that the intensity can be anywhere between 0 and 1.
Given Possible Doppler Shifts…

Say we have information about the velocity. The Doppler shift is such that the shift in wavelength has zero mean with a standard deviation of 0.1 nm.
Probable Answers for Each Question

We now look at the set of probable answers for each question.
Entropy of Distribution of Probable Results

Red shows the entropy of the distribution of probable results.
Where to Measure???

Measure where the entropy is highest!
Professor Keith Earle
UAlbany (SUNY)
ACERT Simulation Workshop 2007

6 February 2009
Kevin H Knuth
CESS 2009
AUTOMATED INQUIRY
Robotic Scientists

This robot is equipped with a light sensor.

It is to locate and characterize a white circle on a black playing field with as few measurements as possible.
Inference Engine

Fully Bayesian Inference Engine

- Accommodates point spread function of light sensor
- Employs Nested Sampling (Skilling 2005) enabling automatic model selection
- Produces sample models from posterior probability
Inquiry Engine

Autonomous Inquiry Engine

- Accommodates point spread function of light sensor
- Relies on samples provided by Inference Engine
- Rapid computation of entropy of distribution of measurements predicted by the sampled models
Initial Stage

BLUE: Inference Engine generates samples from space of polygons / circles

COPPER: Inquiry Engine computes entropy map of predicted measurement results

With little data, the hypothesized shapes are extremely varied and it is good to look just about anywhere.
After Several Black Measurements

With several black measurements, the hypothesized shapes become smaller. Exploration is naturally focused on unexplored regions.

6 February 2009
Kevin H Knuth
CESS 2009
After One White Measurement

A positive result naturally focuses exploration around promising region
After Two White Measurements

A second positive result naturally focuses exploration around the edges
After Many Measurements

Edge exploration becomes more pronounced as data accumulates. This is all handled naturally by the entropy!
Current Research

Generalize the Inference and Inquiry Engine technology to a wide array of scientific and robotic applications.

- Complex Urban Mapping
- Modeling Ephemeral Features
- Sensor Web Deployment with Swarms
- Autonomous Instrument Placement
- Autonomous Experimental Design
'Am I already in the shadow of the Coming Race? and will the creatures who are to transcend and finally supersede us be steely organisms, giving out the effluvia of the laboratory, and performing with infallible exactness more than everything that we have performed with a slovenly approximativeness and self-defeating inaccuracy?'

George Eliot (Mary Anne Evans),

The Impressions of Theophrastus Such, 1879.
Special Thanks to:

John Skilling
Ariel Caticha
Janos Aczél
Keith Earle
Philip Erner
Deniz Gencaga
Philip Goyal
Steve Gull
Jeffrey Jewell
Carlos Rodriguez

Funded in part by:

University at Albany Faculty Research Development Award
NASA AIST-QRS-07-0001
NASA 05-AISR05-0143