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Prior Probabilities
EDWIN T. JAY NES

Abstract-In decision theory, mathematical analysis shows that
once the sampling distribution, loss function, and sample are
specified, the only remaining basis for a choice among different
admissible decisions lies in the prior probabilities. Therefore, the
logical foundations of decision theory cannot be put in fully satis-
factory form until the old problem of arbitrariness (sometimes called
"subjectiveness") in assigning prior probabilities is resolved.
The principle of maximum entropy represents one step in this

direction. Its use is illustrated, and a correspondence property
between maximum-entropy probabilities and frequencies is dem-
onstrated. The consistency of this principle with the principles of
conventional "direct probability" analysis is illustrated by showing
that many known results may be derived by either method. How-
ever, an ambiguity remains in setting up a prior on a continuous
parameter space because the results lack invariance under a change
of parameters; thus a further principle is needed.

It is shown that in many problems, including some of the most
important in practice, this ambiguity can be removed by applying
methods of group theoretical reasoning which have long been
used in theoretical physics. By finding the group of transformations
on the parameter space which convert the problem into an equivalent
one, a basic desideratum of consistency can be stated in the form of
functional equations which impose conditions on, and in some cases
fully determine, an "invariant measure" on the parameter space.
The method is illustrated for the case of location and scale param-
eters, rate constants, and in Bemoulli trials with unknown prob-
ability of success.

In realistic problems, both the transformation group analysis and
the principle of maximum entropy are needel to determine the prior.
The distributions thus found are uniquely determined by the prior
information, independently of the choice of parameters. In a certain
class of problems, therefore, the prior distributions may now be
claimed to be fully as "objective" as the sampling distributions.

I. BACKGROUND OF THE I'ROBLEM

SINCE THE time of Laplace, applications of probability
theory have been hampered by difficulties in the treat-

ment of prior information. In realistic problems of decision
or inference, we often have prior information which is
highly relevaint to the question being asked; to fail to take
it inlto account is to commit the most obvious incon-
sistency of reasoning and m'iy lead to absurd or dan-
gerous-ly misleading results.
As an extreme example, we might klnow in advance that

a certain parameter a < 6. If we fail to incorporate that
fact into the equations, then a conventional statistical
allalysis might easily lead to the conclusioni that the "best"
estimate of 6 is 0* = 8, and a shortest 90-percent con-
fidence interval is (7 < 6 < 9).
Few people will accept an estimate of a parameter which

lies outside the parameter space, and so "orthodox"
statistical principles such as efficienit estimators or shortest
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confideince intervals can bieak dowIi and leave no definite
procedure for inference in the presence of this kind of prior
information. Further examples of this phenomenoni are
given- by Kendall and Stuart [1].
With more "gentle" kinds of prior information, which

do niot absolutely exclude any initerval for 6 but onily render
certaini initervals highly unllikely, the difficulty is less
drastic but still presenit. Such cases are even more dan-
gerous in practice because the shortcomings of orthodox
principles, while just as real, are no longer obvious.
The Bayesian approach to statistics offers some hope

of overcoming such difficulties since, of course, both the
prior anid posterior distributions of 6 will vanish outside
the parameter space, and so the results cannot conflict
with deductive reasoning. However, what determines the
prior withini the parameter space? After nearly two cen-
turies of discussion and debate, we still do not seem to have
the principles needed to translate prior information into a
definite prior probability assignment.

For many years the orthodox school of thought, repre-
sented by- most statisticians, has sought to avoid this
problem by rejecting the use of prior probabilities alto-
gether, except in the case where the prior information coIn-
sists of frequency data. However, as the preceding example
shows, this places a great restrictioni on the class of
problems which can be treated. Usually the prior iliforma-
tioIl does not consist of frequeincy data, but it is nonethe-
less cogent. As Kendall and Stuart [1 ] point out, this is a

major welakness of the principle of confidence intervals.
Witlh the rise of decision theory, this problem has

assumed new importance. As we krlow, this development
was started by Wald [2] with the express purpose of finid-
ing a inew foundationi for statistics which would have the
generality, but avoid the supposed mistakes, of the work
of Bayes a-nd Laplace. But after monumental labors, the
mathematical situation uncovered by Wald finally led to a
realizationi that the only consistent procedure for digesting
iinformLationi into the decisioin process is identical with ap-
plication of Bayes' theorem, and that, once the loss funte-
tioll, sampling distribution, and sample are given, the only
rationald basis for choice among different admissible de-
cisionis lies in the prior probabilities.
Thus in. modern decision theory, it appears that sta-

tistical practice has reached a level where the problem of
prior probabilities can I10 longer be ignored or belittled.
In currenit problems of engineering design, quality coIn-
trol, operations research, and irreversible statistical me-
chanics, we cannot translate the full problem into mathe-
matical terms until we learn how to find the prior proba-
bility assignment which describes the prior information.
In fact, as shown later, in some of the most important
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problems the prior information is the only information
available, and so decisions must be based entirely on it. In
the absence of any principle for setting up prior distribu-
tions, such problems cannot be treated mathematically at
all.
The "personalistic" school of thought (Savage [3], [4])

recognizes this deficiency, but proceeds to overcompensate
it by offering us many different priors for a given state of
prior knowledge. Surely, the most elementary requirement
of consistency demands that two persons with the same
relevant prior information should assign the same prior
probabilities. Personalistic doctrine makes no attempt to
meet this requirement, but instead attacks it as represenit-
ing a naive "necessary" view of probability, and eveii pro-
claims as one of its fundamental tenets ([3], p. 3) that we
are free to violate it without being unireasonable. Con-
sequently, the theory of personalistic probability has come
under severe criticism from orthodox statisticians who
have seen in it an attempt to destroy the "objectivity" of
statistical inference by injecting the user's personal
opinions into it.
Of course, no one denies that personal opinions are en-

titled to consideration and respect if they are based on
factual evidence. For example, the judgment of a compe-
tent engineer as to the reliability of a machine, based on
calculation of stresses, rate of wear, etc., is fully as cogent
as anything we can learn from a random experiment; and
methods of reliability testing which fail to take such in-
formation into account are not only logically inconsistent,
but economically wasteful. Nevertheless, the author must
agree with the conclusions of orthodox statisticians, that
the notion of personalistic probability belongs to the field
of psychology and has no place in applied statistics. Or, to
state this more constructively, objectivity requires that a
statistical analysis should make use, not of anybody's
personal opinions, but rather the specific factual data on
which those opinions are based.
An unfortunate impression has beeni created that re-

jection of personalistic probability automatically means
the rejection of Bayesian methods in general. It will
hopefully be shown here that this is not the case; the
problem of achieving objectivity for prior probability
assignments is not one of psychology or philosophy, but
one of proper definitions and mathematical techniiques,
which is capable of rational analysis. Furthermore, re-
sults already obtained from this analysis are sufficient for
many important problems of practice, and encourage the
belief that with further theoretical development prior
probabilities can be made fully as "objective" as direct
probabilities.

It is sometimes held that this evident difference in the
nature of direct and prior probabilities arises from the fact
that the former have a clear frequency initerpretation
usually lacking in the latter. However, there is almost no
situation of practice in which the direct probabilities are
actually verified experimentally in the frequency sense.
In such cases it is hard to see how the mere possibility of

thinking about direct probabilities as frequencies in a lioni-
existent experimenlt can really be essential, or even rele-
vant, to the problem.

Perhaps the real differeince between the manifestly
"public" nature of direct probabilities and the "private"
nature of prior probabilities lies in the fact that in one case
there is an established theory, accepted by all (i.e.,
Bernoulli trials, etc.), which tells how to calculate them;
while in the case of prior probabilities, no universally
accepted theory exists as yet. If this view is correct, we
would expect that with further developmeent of probability
theory, the distinction will tend to disappear. The two
principles maximum entropy and transformatioll
groups- discussed in the following sections represent
methods for calculatinig probabilities which apply indif-
ferently to either.

II. THE BAsIc DESIDERATUM

To elaborate the point just made, a prior probability
assignment not based on frequencies is necessarily "sub-
jective" in the sense that it describes a state of kinowledge,
rather than anything which could be measured in an ex-
periment. But if the methods are to have any relevance to
science, the prior distributioin must be completely "ob-
jective" in the sense that it is independent of the per-
sonality of the user. On this point, it is believed that even
the most ardent Bayesiani must agree with orthodox stat-
isticians. The measure of success in producingf an objec-
tive theory of decision or inference is just the extenit to
which we are able to eliminate all personalistic elements
and create a completely "impersonalistic" theory.

Evidently, theni, we ineed to find a middle grouind be-
tween the orthodox and personalistic approaches, which
will give us just onie prior distribution for a givern state of
prior knowledge. Historically, orthodox rejection of
Bayesian methods was not based at first on atny ideological
dogma about the "meaniing of probability" and certainily
not on any failure to recog,nize the importance of prior in-
formation; this has been nioted by Ketndall anid Stuar-t
[1], Lehmann [5 ], aild many other orthodox writers. The
really fundamental objectioin (stressed particularly in the
remarks of Pearsoni in Satvage [4]) was the lack of ainy
principle by which the prior probabilities could be made
objective in the aforementioned senise. Bayesian methods,
for all their advanitages, will not be etntirely satisfactory
until we face the problem squarely alid show how this re-
quirement may be met.

For later purposes it will be convenient to state this
basic desideratum as follows: in twvo problemiis where we
have the same prior informnation, we should assign the
same prior probabilities. This is stated in such a way that
it seems psychologically impossible to quarrel with it;
indeed, it may appear so trivial as to be without useful
content. A major purpose of the present paper is to show
that in many cases, in spite of first appearances, this
desideratum may be formulated mathematically in a way
which has nontrivial consequences.

228

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on August 17,2020 at 14:59:40 UTC from IEEE Xplore.  Restrictions apply. 



JAYNES: PRIOR PROBAXB1LKTIES

Some kinds of prior information seem too vague to be
translatable into mathematical terms. If we are told that,
"Jones was very pleased at the suggestion that 0 might be
greater than 100," we have to concede that this does con-
stitute prior information about 0; if we have great respect
for Jones' sagacity, it might be relevant for inferences
about 0. But how can this be incorporated into a mathe-
matical theory of inference? There is a rather definite
minimum requirement which the prior information must
satisfy before it can be used by any presently known
methods.

Definition 1: A piece of information I concerning a
parameter 0 will be called testable if, given any proposed
prior probability assignment f(0) do, there is a procedure
which will determine unambiguously whether.f(0) does or
does not agree with the information I.
As examples, consider the following statements.

1I: "0 < 6."
I2: "The mean value of tanh-1 (1 - 02) in previous

measurements was 1.37."
13: "In the eighteenth century, Laplace summarized

his analysis of the mass of Saturn by writing, 'It is a
bet of 11 000:1 that the error of this estimate is not
1/100 of its value.' He estimated this mass as 1/3512
of the sun's mass."

14. "There is at least a 90-percent probability that
0> 10."

III. MVIAXIMUM ENTROPY

We illustrate this method by a simple example which
occurred in a physical problem (distribution of impurities
in a crystal lattice), and for simplicity consider only a one-
dimensional version. An impurity atom may occupy any
of n different positions {x1 xX }, where xj = jL and L is
a fixed length. From experiments on scattering of X rays, it
has been determined that there is a moderate tendency to
prefer sites at which cos(kxj) > 0, the specific datum being
that in many previous instances the average value of
cos kx, was

(cos kxj) = 0.3. (1)

This is clearly testable information, and it is desired to find
a probability assignment pj for occupation of the jth site
which incorporates this information, but assumes nothing
further, from which statistical predictions about future
instances can be made.
The mathematical problem is then to find the pj which

will maximize the entropy
n

H = - pj log pj
j=l

subject to the constraints pj > 0, and

E pj= 1

Ejpj cos(kxj) = 0.3.

(2)

(3)

(4)

Statements h1 and 12 clearly constitute testable informa-
tion; they can be used immediately to restrict the form of
a prior probability assignment. Statement 13 becomes
testable if we understand the exact meaning of Laplace's
words, and very easily so if we know the additional
historical fact that Laplace's calculations were based on
the incomplete beta distribution. I4 is also clearly testable,
but it is perhaps less clear how it could lead to any unique
prior probability assignment.
Perhaps in the future others will discover new principles

by which nontestable prior information could be used in a
mathematical theory of inference. For the present, how-
ever, we restrict ourselves to a search for formal principles
by which testable information can be converted into a
unique prior probability assignment.

Fortunately, we are not without clues as to how this
uniqueness problem might be solved. The principle of
maximum entropy (i.e., the prior probability assignment
should be the one with the maximum entropy consistent
with the prior knowledge) gives a definite rule for setting
up priors. The rule is impersonal and has an evident intui-
tive appeal [6]-[11] as the distribution which "assumes
the least" about the unknown parameter. In applications
it has a number of advantages, but also some shortcomings
which prevent its being regarded as a complete solution
to the problem.
We now survey these briefly and aim to supplement the

principle in a way that retains the advantages, while cor-
recting the shortcomings.

The solution is well known, and in this case takes the form

1
Zj(=x) exp[X cos kxj](5

where Z(X) is the partition function
n

Z(A) -E exp[X cos kxj]
j=1

and the value of X is to be determined from (4):

(cos k-x1) = log Z(X) = 0..3.

(6)

(7)

In the case where ka << 1, nka >> 1, we may approxi-
mate the discrete sums sufficiently well by integrals, lead-
iing to

(8)
ImX- 1 (X)

(cos mkx) Im (X)
IO(X (9)

where Im(1X) are the modified Bessel functions. From (1),
and (9) in the case mn - 1, we find X = 0.63.
Having found the distribution pj, we can now use it as

the prior from which further information about the im-
purity location can be incorporated via Bayes' theorem.
For example, suppose that if the impurity is at site j,
the probability that a neutron incident on the crystal will
be reflected is proportional to sin2kxj. We acquire the new
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data: "n neutrons incident, r reflected." The posterior
probability for the impuirity to be at site j would then be

p(xjQr), r) = Apjp(r n, J)
= B exp { X cos kxj} sin2kxj}r cos2kxj } n -r (10)

where A, B are normalizing constants.
Alternatively, and representative of a large class of im-

portant problems which includes statistical mechainics,
the prior distribution pj may be used directly for certain
kinds of decision or iinference. For example, suppose that
before the ineutron reflection experiment, we wish to esti-
mate the probability of reflection of r neutrotns from n
incident. Conditioinal only on the prior informationi (1),
this probability is

n

p2s = E P n, j)pi)pQn =ZI Jp
j=

= (') ({jsin2kx } r{cos2kx}n -r) (11)

the expectation value being taken over the prior distribu-
tion (5). In the case n = X = 1, it reduces to the probability
of reflection at a single trial; usillg (9), we find

(sin2kx) = 70 12 = X '(cos kx) = 0.48

which is only slightly below the value 0.50 corresponding
to a uniform prior distribution pj; thus, in agreement with
our intuition, the moderate constraint (1) is by iio means

sufficient to inhibit appreciably the occupation of sites for
which Isin kxl << 1. On the other hand, if the prior in-
formation had given (cos kx) = 0.95, repetitioni of the
argument would yield (sinAkx) = 0.09, indicating now a

very appreciable inhibitioni.
The values of (sin2kx) thus calculated represent esti-

mates of sin'kx which are "optimal" in the sense that 1)
they are "maximally noncommittal" with regard to all
information except the specific datum given; and 2) they
minimize the expected square of the error. Of course, in a

problem as rudimentary as this, one does not expect that
these estimates can be highly reliable; the information
available is far too meager to permit such a thing. But this
fact, too, is automatically incorporated into the maximum-
entropy formalism; a measure of the reliability of the esti-
mate is given by the expected "loss function," which in
this case is just the variance of sin2kx over the maximum-
entropy distribution

2 = (sin4kx) -(sin2kx)2 = Io2 -222 + IoI4 (

from which we find, in the cases (cos kx) = 0.3, 0.95, the
values a- = 0.35, a. = 0.12, respectively. Thus, if (cos kx)
= 0.3, no accurate estimate of sin2kx is possible; we can

say only that it is reasonably likely to lie in the interval
(0.13, 0.83). With the prior datum (cos kx) = 0.95, we are

in a somewhat better position, and can say that sin2kx is
reasonably likely to be less than 0.21.

Evidently the principle of maximum entropy can yield
reliable predictions only of those quantities for which it
leads to a sharply peaked distribution. If, for example, we
find that a maximum-entropy distribution concentrates
99.99 percent of the prob-ibility oIn those values of x for
which 6.72 <f(x) < 6.73, we shall feel justified in predicting
thatf(x) lies in that initerval, and in attributing a very high
(but not necessarily 99.99 percent) reliability to our pre-
diction. M\athematically, both equilibrium and InoIn-
equilibrium statistical mechanics are equivalent to apply-
ing the principle of maximum entropy in just this way;
and their success derives from the enormous number of
possible microstates, which leads to very sharply peaked
distributions (typictlly of relative width 10-12) for the
quantities of interest.

Let us now try to utiderstand some conceptual problems
arising from the principle of maximum entropy. A com-
mon objection to it is that the probabilities thus obtained
have no frequency interpretation, and therefore cannot be
relevant to physical applications; there is no reason to be-
lieve that distributions observed experimentally would
agree with the ones found by maximum entropy. We wish
to show that the situation is a great deal more subt'e than
that by demonstrating that 1) there is a sense in which
maximum-entropy distributions do have a precise cor-
respondence with frequencies; 2) in most realistic problems,
however, this frequency connection is unnecessary for the
usefulness of the principle; and 3) in fact, the principle is
most useful in just those cases where the empirical distri-
bution fails to agree with the one predicted by maximum
entropy.

IV. THE CORRESPONDENCE PROPERTY

Application of the principle of maximum entropy does
not require that the distributioin sought be the result of
any random experiment (in fact, its main purpose was to
extend the range of application of Bayesian methods to
problems where the prior probabilities have no reasonable
frequency interpretation, such problems being by far the
most often encountered in practice). Nevertheless, nothing,
prevents us from applying it also in cases where the prior
distribution is the result of some random experiment, anid
one would hope that there is some close correspondeince
between the maximum-entropy distribution aind observ-
able frequencies in such cases; indeed, any principle for
assigning priors which lacked this correspondence property
would surely contain logical inconsistencies.
We give a general proof for the discrete case. The

quantity x can take on the values {xl... x, where n
may be finite or countably infinite, and the xi may be
specified arbitrarily. The available information about r
places a number of coiistraints on the probability distribui-
tion pi = p(Xi). We assume for convenience, although it is
in ino way inecessary for our argument, that these take the
form of mean values of several functions { fi(x), ...,
fm(x) }, where in < n. The probability distribution pi which
incorporates this informationi, but is free from all other
assumptions, is thein the otne which maximizes
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n

H = -E pilogpX (14)
i=i

subject to the constraints

EiPi= 1 (15)

Eipifk(xi) = Fk, k = 1, 2,. *,m (16)

where the Fk are the prescribed mean values. Again, the
well-known solution is

1
Pi = exp[X1f1(xi) + *- + Xmfm(Xi)I (17)

Z(X1 ... Xn)
with the partition function

n
Z(X1 ... Xm)= E exp[X1f1(xi) + + Xmfm(xi)] (18)

i=1

in which the real constants Xk are to be determined from
the constraints (16), which reduce to the relations

Fk = -log Z(X1 *. XAm).a)x\ (19)

The distribution (17) is the one which is, in a certain sense,
spread out as uniformly as possible without contradicting
the given information, i.e., it gives free rein to all possible
variability of x allowed by the constraints. Thus it ac-
complishes, in at least one sense, the intuitive purpose of
assigning a prior distribution; it agrees with what is known,
but expresses a "maximum uncertainty" with respect to
all other matters, and thus leaves a maximum possible
freedom for our final decisions to be influenced by the sub-
sequent sample data.
Suppose now that the value of x is determined by some

random experiment; at each repetition of the experiment
the final result is one of the values xi. On the basis of the
given information, what can we say about the frequencies
with which the various xi will occur? Let the experiment be
repeated M times (we are particularly interested in the
limit M -- co, because that is the situation referred to in
the usual frequency theory of probability), and let every
conceivable sequence of results be analyzed. Each trial
could give, independently, any one of the results {XI...
xn }, and so there are a priori nM conceivable detailed out-
comes. However, many of these will be incompatible with
the given information about mean values of the fk(x). We
will, of course, assume that the result of the random ex-
periment agrees with this information (if it did not, then
the given information was false and we are doing the wrong
problem). In the M repetitions of the experiment, the re-
sult xi will be obtained ml times, x2 will be obtained mn2
times, etc. Of course,

n

E m= M (20)

and if the specified mean values are in fact verified, we
have the additional relations

n

mmijk(x?) = MFk, k = 1, * , . (21)
i=l

If m < n - 1, the constraints (20) and (21) are insuf-
ficient to determine the relative frequencies fj = m1/M.
Nevertheless, we have strong grounds for preferring some
choices of the f, to others. For out of the original nM con-
ceivable results, how many would lead to a given set of
sample numbers {I i1 ...Mn}? The answer is, of course,
the multinomial coefficient

711 ! M l11!
ml ! in,,! (Mf1) ! (Mfn) ! (22)

and so the set of frequencies {f,.. f,n } which can be
realized in the greatest number of ways is the one which
maximizes (22) subject to the constraints (20) and (21).
We may, equally well, maximize any monotonic increasing
function of W, in particular M-1 log W, but as M -- oo we

have immediately from the Stirling approximation,

n

31-1 log W-> - E fi logfi = Hf.
i= 1

(23)

It is now evident that, in (20)-(23) we have formulated
exactly the same mathematical problem as in (14)-(16),
and that this identity will persist whether or not the con-
straints take the form of mean values. Given any testable
prior information, the probability distribution which
maximizes the entropy is numerically identical with the
frequency distribution which can be realized in the greatest
number of ways.
The maximum in W is, furthermore, enormously sharp;

to investigate this, let {fi I be the set of frequencies which
maximizes W and has entropy Hf and {fi' } be any other
set of frequencies which agrees with the constraints (20)
and (21) and has entropy Hf' < Hf. The ratio [(number of
ways in which {fi } could be realized)/(number of ways in
which {fi'} could be realized)] grows asymptotically as

,I e ll(Hf - Hf') (24)

and passes all bounds as M -* oo. Therefore, the distribu-
tion predicted by maximum entropy can be realized ex-
perimentally in overwhelmingly more ways than cani any
other. This is the precise connection between maximum-
entropy distributions and frequencies promised in Section
III.

iNow, does this property justify a prediction that the
maximum-entropy distribution will, in fact, be observed in
a real experiment? Clearly not, in the sense of deductive
proof, for different people may have different amounts of
information, which will lead them to set up different
maximum-entropy distributions. Consider a specific case:
Mr. A knows the mean values (fi(x)), Kf2(x)); but Mr. B
knows in addition f3(x)). Each sets up a maximum-
entropy distribution conditional on his information, and
since M\{r. B's entropy HB is maximized subject to one
further constraint, we will have

HB < HA. (25)
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We note two properties, easily verified from the fore-
going equations. If Mr. B's additional information is re-
dundant (in the sense that it is only what Mr. A would
have predicted from his distribution), then X3 = 0, and
the distribution is unchanged. In this cise, and only in
this case, we have equality in (25). Because of this prop-
erty (which holds generally), it is never necessary when
setting up a maximum-entropy problem to determine
whether the different pieces of information used are inde-
pendent; any redundant information will drop out of the
equations automatically.
On the other hand, if the given pieces of information

are logically contradictory (for example, if it turns out
that f3(x) = fi(x) + 2 f2(x), but the given mean values
fail to satisfy Kf3) = (fi) + 2 (.f2)), then it will be found that
(19) has no simultaneous solution with real Xk. In this case,
the method of maximum entropy breaks down, as it
should, giving us no distribution at all.

In general, MXfr. B's extra information will be neither
redundant nor contradictory, and so he will find a maxi-
mum-entropy distribution different from that of i\Ir. A.
The iiiequality will then hold in (25), indicating that Mr.
B's extra information was "useful" in further narrowing
down the range of possibilities. Suppose now that we start
performing the random experiment with MIr. A and Mr. B
watching. Since M\Jr. A predicts a mean value (f3) different
from the correct one known to M\Ir. B, it is clear that the
experimental distribution cannot agree in all respects
with Mr. A's prediction. We cannot be sure in advance that
it will agree with M\Ir. B's prediction either, for there may
be still further constraints f4(x), f5(x), * , etc., operating
in the experiment but unknown to Air. B.
However, the property demonstrated above does justify

the following weaker statement of frequency correspon-
dence. If the information incorporated into the maximum-
entropy analysis includes all the constraints actually
operative in the random experiment, then the distribution
predicted by maximum entropy is overwhelmingly the
most likely to be observed experimentally, because it can
be realized in overwhelmingly the greatest number of
ways.

Conversely, if the experiment fails to confirm the
maximum-entropy prediction, and this disagreement per-
sists on indefinite repetition of the experiment, then we
will conclude that the physical mechanism of the experi-
ment must contain additional constraints which were not
taken into account in the maximum-entropy calculation.
The observed deviations then provide a clue as to the
nature of these new constraints. In this way, Mr. A can
discover empirically that his information was incomplete.
Now the little scenario just described is an accurate

model of just what did happen in one of the most important
applications of statistical analysis, carried out by Gibbs.
By the year 1900 it was known that in classical statistical
mechanics, use of the canonical ensemble (which Gibbs de-
rived as the maximum-entropy distribution over classical
phase volume, based on a specified mean value of the
energy) failed to predict thermodynamic properties (heat

capacities, equations of state, equilibrium constants, ete.)
correctly. Analysis of the data showed that the entropy of
a real physical system was always less than the value pre-
dicted. At that time, therefore, Gibbs was in just the posi-
tion of Mfr. A in the scenario, and the conclusion was
drawn that the microscopic laws of physics must involve
an additional constraint not contained in the laws of
classical mechanics.

In due course, the nature of this constraint was found;
first by Planck in the case of radiation, then by Einstein
and Debye for solids, and finally by Bohr for isolated
atoms. The constraint consisted in the discreteness of the
possible energy values, thenceforth called energy levels.
By 1927, the mathematical theory by which these could
be calculated was developed nearly to its present form.
Thus it is an historical fact that the first clues indicating

the need for the quantum theory, and indicating some
necessary features of the new theory, were uncovered by
a seemingly "unsuccessful" application of the principle of
maximum entropy. We may expect that such things will
happen again in the future, and this is the basis of the re-
mark that the principle of maximum entropy is most useful
to us in just those cases where it fails to predict the correct
experimental facts.

Since the history of this development is not well known
(a fuller account is given elsewhere [12]), the following
brief remarks seem appropriate here. Gibbs [13] wrote his
probability density in phase space in the form

w(qi ... qn; pi ... pn) = exp[,q(q ... pn)] (26)

and called his function X the "index of probability of
phase." He derived his canonical and grand canonical en-
sembles ([13], ch. 11) from constraints on average energy,
and average energy and particle numbers, respectively, as
([13], p. 143) "the distribution in phase which without
violating this condition gives the least value of the average
index of probability of phase i . ." This is, of course,
just what we would describe today as maximizing the
entropy subject to constraints.

Unfortunately, Gibbs did not give any clear explana-
tion, and we can only conjecture whether he possessed one,
as to why this particular function is to be minimized on
the average, in preference to all others. Consequently,
his procedure appeared arbitrary to many, and for sixty
years there was controversy over the validity and justifica-
tion of Gibbs' method. In spite of its enormous practical
success when adapted to quantum statistics, few attempts
were made to extend it beyond problems of thermal
equilibrium.

It was not until the work of Shannon in our own time
that the full significance and generality of Gibbs' method
could be appreciated. Once we had Shannon's theorem
establishing the uniqueness of entropy as an "information
measure," it was clear that Gibbs' procedure was an ex-
ample of a general method for inductive inference, whose
applicability is in no way restricted to equilibrium thermo-
dynamics or to physics.
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V. CONNECTION WITH DIRECT PROBABILITY MIODELS

Another important conceptual point is brought out by
comparing the frequency correspondence property of
maximum-entropy distributions with those obtained from
other theoretical models, for example, the standard model
of Bernoulli trials. We wish to show that this difference is
far less than is often supposed.
As noted previously, we are not entitled to assert that

the distribution predicted by maximum entropy must be
observed in a real experiment; we can say only that this
distribution is by far the most likely to be observed, pro-
vided that the information used includes all the constraints
actually operating in the experiment. This requirement,
while sufficient, is not always necessary; from the fact that
the predicted distribution has been observed, we cannot
conclude that no further constraints exist beyond those
taken into account. We can conclude only that further
constraints, if present, must be of such a nature that they
do not affect the relative frequencies (although they might
affect other observable things such as correlations).
Now what are we entitled to assert about frequency

correspondence of probabilities calculated from the theory
of Bernoulli trials? Clearly no probability calculation,
whether based on maximum entropy or any other principle,
can predict with certainty what the result of a real ex-
periment must be; if the information available were suf-
ficient to permit such a thing, we would have no need of
probability theory at all.

In the theory of Bernoulli trials, we calculate the
probability that we shall obtain r successes in n trials as

p(rln) =() pr(l - p)n-r (27)

in which p is regarded as a given number in 0 < p < 1. For
finite n, there is no r in 0 < r < n which is absolutely ex-

cluded by this, and so the observed frequency of success

f = r/n cannot be predicted with certainty. Nevertheless,
we infer from (27) that, as n becomes very large, the
frequency f = p becomes overwhelmingly the most likely
to be observed, provided that the assumptions which
went into the derivation of (27) (numerical value of p, in-
dependeince of different trials) correctly describe the con-

ditions operative in the real experiment.
Conversely, if the observed frequency fails to agree with

the predictions (and this tendency persists on indefinite
repetitions of the experiment), we will conclude that the
physical mechanism of the experiment is different from
that assumed in the calculation, and the nature of the
observed deviation gives a clue as to what is wrong in our

assumptions.
On comparing these statements of probability-fre-

quency correspondence, we see that there is virtually no

difference in the logical situation between the principles
of maximum entropy and of Bernoulli trials. In both
cases, and in every other application of probability theory,
the onus is on the user to make sure that all the informa-
tion, which his common sense tells him is relevant to the

problem, is actually incorporated into the equations.
There is nothing in the mathematical theory which can
determine whether this has been, in fact, accomplished;
success can be known only a posteriori from agreement
with experiment. But in both cases, failure to confirm the
predictions gives us an opportunity to learn more about the
physical mechanism of the experiment.
For these reasons, we are entitled to claim that proba-

bilities calculated by maximum entropy have just as much
and just as little correspondence with frequencies as those
calculated from any other principle of probability theory.
We can make this point still more strongly by exhibiting

a mathematical connection between these two methods of
calculation, showing that in many cases we can obtain
identical results from use of either method. For this
purpose, it is convenient to introduce some more of the
vocabulary usually associated with information theory.
Any random experiment may be regarded as a "message"
transmitted to us by nature. The "alphabet" consists of
the set of all possible outcomes of a single trial; on each
repetition of the experiment, nature transmits to us one
more letter of the message. In the case of Bernoulli trials,
we are concerned with a message on a binary alphabet.
Define the "random variables"

{1, if the ith trial yields success)
Y' :'

0, if the ith trial yields failure (28)

On n repetitions of the experiment, we receive the message

(29)M, { YlY2 . *Yn.}

and the total number of successes obtaiined is
n

r1.(M1) =-E= y1.
i= 1

From (27) we find that, for any n, the expected number
of successes is

(r) = np. (31)

Suppose now that we reverse our viewpoint, regard (31) as

the primary given datum, and seek the probability of
obtaining r successes in it trials by maximum entropy. A
full probability analysis of the experiment requires that we
consider, not just the probabilities on the 2-point sample
space of a single trial, but rather the probabilities

PM P{YO ... Yn} (32)

on the 28-point sample space of all possible messages. The

problem is then to find the distribution PM which maxi-
mizes the entropy

H = -E P"\ log PAI,
11I

subject to the constiaint (31). The result is

p Z(X)1 Xr(M)PM - Z(\)e

(:33)

(34)

(30)
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with the partition function

Z(X) = Z eAr(M) = (ex + 1).
M

The value of X is determined, as always, by (19):

(r) = - log Z = n(e- + 1)

or

n -(r) - -oP

information. The usual theory of discrete stochastic
(35) processes can be derived by this same application of maxi-

mum entropy on a higher manifold, for particular kinds of
information about correlations. To give only the simplest
example, suppose that in our random experiment with m
possible outcomes per trial, we are giveni informationi fixing
the mean values not only of the "single-letter frequencies"
(f,), but also the "digram frequencies" (fjj4. The maximum-
entropy distribution over messages will then take the form

(36) PM =
I

exp X[ifi(M) + E Xiifii(M)]Z i ij
(38)

Using (35) and (36), the maximum-entropy distribution
(34) reduces to

PM = pr(l - p)n-r. (37)

This is the probability of obtaining a specific message, with
successes at specified trials. The probability of obtaining r
successes regardless of the order then requires the addi-
tional binomial coefficient, and so we obtain precisely the
result (27) of the Bernoulli model.
From a mathematical standpoint, therefore, it is im-

material whether we approach the theory of Bernoulli
trials in the conventional way, or whether we regard it is as
an example of maximum-entropy inference on a "higher
manifold" than the sample space of a single trail, in which
the only information available is the mean value (31).

In a similar way, many other of the so-called "direct
probability" calculations may be regarded equally well as
the result of applying the principle of maximum entropy on
a higher manifold. If we had considered a random experi-
ment with m possible outcomes at a single trial, we would
be concerned with messages on an alphabet of m symbols
{Al ... Am}, and repetition of the preceding argument
leads immediately to the usual multinomial distribution.
We may, perhaps, feel that this result gives us a new

insight into the nature of Bernoulli trials. The "indepen-
dence of different trials" evident already from (34) arises
here from the fact that the givein information consisted
only of statements about individual trials and said nothing
about mutual properties of different trials. The principle of
maximum entropy thus tells us that, if no information is
available concerning correlations between different trials,
then we should not assume any such correlations to exist.
To do so would reduce the entropy of the distribution PM
and thus reduce the range of variability of different mes-
sages below that permitted by the data, i.e., it would amount
to introducing new arbitrary assumptions not warranted by
the given information. The precise nature of this reduction
is described by the asymptotic equipartition theorem [14].
The principle of maximum entropy is just the formal device
which ensures that no such hidden arbitrary assumptions
have been introduced, and so we are taking into account
the full range of possibilities permitted by the information
at hand.

If definite information concerning correlations is avail-
able, the maximum-entropy method readily digests this

where nfi(M) is the number of times the letter A i occurs in
the message M, and (n - 1) fij(M) is the number of times
the digram AiAj occurs in MI. The partition function Z is
determined by normalization of (38). Calculation of the
Xi and the Xij from (19) is no longer trivial; however, we
find the problem to be exactly solvable [15]. For messages
of finite length, there are small "end effects," but in the
limit of long messages the maximum-entropy distribution
(38) reduces to the distribution of a M\Iarkov chain with
transition probabilities Pij = (fij)/(fi), in agreement with
the results of conventional methods.

In a similar way, if the given information includes ex-
pectations of trigram frequencies (fiik)i we obtain the dis-
tribution of a higher tvpe stochastic process, in which the
probability of the outcome Ai at any trial depends on the
results of the previous two trials, etc.
To point out the possibility of deriving so much of con-

ventional "direct probability" analysis from maximum
entropy on a higher manifold is, of course, in no way to
suggest that conventional methods of analysis be aban-
doned in favor of maximum entropy (although this would
bring a higher degree of unity into the field), because in
these applications the conventional methods usually lead to
shorter calculations. The pragmatic usefulness of maximum
entropy lies rather in the fact that it is readily applied in
many problems (in particular, setting up prior probability
assignments) where conventional methods do not apply.

It is, however, important to realize the possibility of
deriving much of conventional probability theory from the
principle of maximum entropy, firstly, because it shows
that this principle fits in neatly and consistently with the
other principles of probability theory. Secondly, we still
see from time to time some doubts expressed as to the
uniqueness of the expression (- p log p); it has even been
asserted that the results of maximizing this quantity have
no more significance than those obtained by maximizing
any other convex function. In pointing out the correspon-
dence with frequencies and the fact that many other stan-
dard results of probability theoryfollowfrom the maximum-
entropy principle, we have given a constructive answer to
such objections. Any alternative expression to (- p log p)
must surely reproduce all these desirable properties before
it could be taken seriously. It seems to the author impossi-
ble that any alternative quantity could do so, and likel-
that a rigorous proof of this could now be given.
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VI. CONTINUOUS DISTRIBUTIONS

Thus far we have considered the principle of maximum
entropy only for the discrete case and have seen that if the
distribution sought can be regarded as produced by a ran-
dom experiment, there is a correspondence property be-
tween probability and frequency, and the results are con-
sistent with other principles of probability theory. How-
ever, nothing in the mathematics requires that any random
experiment be in fact performed or conceivable; and so we
interpret the principle in the broadest sense which gives it
the widest range of applicability, i.e., whether or not any
random experiment is involved, the maximum-entropy
distribution still represents the most "honest" description
of our state of knowledge.

In such applications, the principle is easy to apply and
leads to the kind of results we should want and expect.
For example, in Jaynes [16] a sequence of problems of
decision making under uncertainty (essentially, of inven-
tory control) of a type which arises constantly in practice
was analyzed. Here the state of nature was not the result of
any random experiment; there was no sampling distribu-
tion and no sample. Thus it might be thought to be a "no
data" decision problem, in the sense of Chernoff and MAloses
[17]. However, in successive stages of the sequence, there
were available more and more pieces of prior information,
and digesting them by maximum entropy led to a sequence
of prior distributions in which the range of possibilities was
successively narrowed down. They led to a sequence of
decisions, each representing the rational one on the basis of
the information available at that stage, which corre-
sponded to intuitive common-sense judgments in the early
stages where intuition was able to see the answer. It is
difficult to see how this problem could have been treated at
all without use of the principle of maximum entropy, or
some other device that turns out in the end to be equivalent
to it.

In several years of routine application of this principle in
problems of physics and engineering, we have yet to find
a case involving a discrete prior where it fails to produce a
useful anid intuitively reasonable result. To the best of the
author's knowledge, no other general method for setting up
discrete priors has been proposed. It appears, then, that
the principle of maximum entropy may prove to be the
final solution to the problem of assigning discrete priors.

Use of this principle in setting up continuous prior
distributions, however, requires considerably more analysis
because at first glance the results appear to depend on the
choice of parameters. We do not refer here to the well-
known fact that the quantitv

H'- -f p(x) log p(x) dx (39)

lacks invariance under a change of variables x--y(x), for
(39) is not the result of any derivation, and it turns out not
to be the correct information measure for a conitinuous
distribution. Shannon's theorem establishing (14) as an

information measure goes through only for discrete distri-

butions; but to find the corresponding expression in the
continuous case we can (in the absence of any more direct
argument) pass to the limit from a discrete distribution.
As shown previously [7 ], this leads instead to the quantitv

HC - p(x)log[p(x)/ml(x))]dx (40)

where m(x) is an "invariant measure" function, propor-
tional to the limiting density of discrete points. (In all
applications so far studied, m(x) is a well-behaved contin-
uous function, and so we continue to use the notationi of
Riemann integrals; we call m(x) a "measure" only to sug-
gest the appropriate generalization, readily supplied if a
practical problem should ever require it.) Since p(x) and
m(x) transform in the same way under a change of vari-
ables, H, is invariant. We examine the form of maximum-
entropy inference based on this information measure, in
which we may regard x as being either a one-dimensional or
multidimensional parameter.
We seek a probability density p(x) which is to be nor-

malized:

fp(x) dx = 1 (41)

(we understand the range of integration to be the full
parameter space); and we have information fixing the mean
values of m different functionsfk(x):

Fk =f p(x) fk(x) dx, k = 1, 2, * *, m (42)

where the Fk are the given numerical values. Subject to
these constraints, we are to maximize (40). The solution is
again elementary:

p(x) = Z-I m(x) exp[XJfi(x) + * + Xmfm(x)1 (43)
with the partition function

Z(Xl ..

I X,Am)-Jm (x) exp [Xfi (x) + * + Xm. (x) ] dx

(44)

and the Lagrange multipliers Xk are determined once again
by (19). Our "best" estimate (by quadratic loss function)
of any other quantity q(x) is then

(q) =fq(x) p(x) dx. (45)

It is evident from these equations that when we use (40)
rather than (39) as our information measure not only our
final conclusions (45), but also the partition function and
Lagrange multipliers are all invariant under a change of
parameters x - y(x). In applications, these quantities
acquire definite physical meanings.
There remains, however, a practical difficulty. If the

parameter space is not the result of any obvious limiting
process, what determines the proper measure m(x)? The
conclusions, evidently, will depend on which measure we

adopt. This is the shortcoming from which the maximum-
entropy principle has suffered heretofore, and which must
be cleared up before we can regard it as a full solution to the
prior probability problem.
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Let us note the intuitive meaning of this measure.
Consider the one-dimensional case, and suppose it is
known that a < x < b but we have no other prior informa-
tion. Then there are no Lagrange multipliers X,, and (43)
reduces to

rb-
p(x) - [fm(x) dx m(x), a < x < b. (46)

Except for a constant factor, the measure m(x) is also
the prior distribution describing "complete ignorance" of
x. The ambiguity is, therefore, just the ancient one which
has always plagued Bayesian statistics; how do we find the
prior representing "complete ignorance?" Once this prob-
lem is solved, the maximum-entropy principle will lead
to a definite, parameter-independent method for setting up
prior distributions based on any testable prior information.
Since this problem has been the subject of so much dis-
cussion and controversy for 200 years, we wish to state
what appears to us a constructive attitude toward it.
To reject the question, as some have done, on the

grounds that the state of complete ignorance does not
"exist" would be just as absurd as to reject Euclidean
geometry on the grounds that a physical point does not
exist. In the study of inductive inference, the notion of
complete ignorance intrudes itself into the theory just as
naturally and inevitably as the concept of zero in arith-
metic.

If one rejects the consideration of complete ignorance on
the grounds that the notion is vague and ill-defined, the
reply is that the notion cannot be evaded in any full theory
of inference. So if it is still ill-defined, then a major and
immediate objective must be to find a precise definition
which will agree with intuitive requirements and be of
constructive use in a mathematical theory.
With this in mind, let us survey some previous thought

on the problem. Bayes suggested, in one particular case,
that we express complete ignorance by assigning a uniform
prior probability density; and the domain of useful applica-
tion of this rule is certainly not zero, for Laplace was led to
some of the most important discoveries in celestial me-
chanics by using it in analysis of astronomical data. How-
ever, Bayes' rule has the obvious difficulty that it is not
invariant under a change of parameters, and there seems to
be no criterion telling us which parameterization to use.
(We note in passing that the notions of an unbiased esti-
mator, an efficient estimator, and a shortest confidence
interval are all subject to just the same ambiguity with
equally serious consequences, and so orthodox statistics
cannot claim to have solved this problem any better than
Bayes did.)

Jeffreys [18], [19] suggested that we assign a prior
d/al to a continuous parameter a known to be positive, on
the grounds that we are then saying the same thing whether
we use the parameter a or a-m. Such a desideratum is surely
a step in the right direction; however, it cannot be ex-
tended to more general parameter changes. We do not
want (and obviously cannot have) invariance of the form

of the prior under all parameter changes; what we want is
invariance of content, but the rules of probability theory
already determine how the prior must transform, under any
parameter changes, so as to achieve this.
The real problem, therefore, must be stated rather dif-

ferently; we suggest that the proper question to ask is:
"For which choice of parameters does a given form such as
that of Bayes or Jeffreys apply?" Our parameter spaces
seem to have a mollusk-like quality that prevents us from
answering this, unless we can find a new principle that gives
them a property of "rigidity."

Stated in this way, we recognize that problems of just
this type have already appeared and have been solved in
other branches of mathematics. In Riemannian geometry
and general relativity theory, we allow arbitrary contin-
uous coordinate transformations; yet the property of
rigidity is maintained by the concept of the invariant line
element, which enables us to make statements of definite
geometrical and physical meaning independently of the
choice of coordinates. In the theory of continuous groups,
the group parameter space had just this mollusk-like
quality until the introduction of invariant group measure
by Hurwitz [20] and Haar [21], [22]. We seek to do some-
thing very similar to this for the parameter spaces of
statistics.
The idea of utilizinig groups of transformations in prob-

lems related to this was discussed by Poincare [23] and
more recently by Fraser [24], Hartigan [251, and Stone
[26]. In the followiing section we give three examples of a
different group theoretical method of reasoning developed
largely by Weyl and Wigner [20], which has met with great
success in physical problems and seems uniquelv adapted
to our problem.

VII. TRANSFORMATION GROUPS-EXAMPLES
The method of reasoning is best illustrated by a simple

example, which also happens to be one of the most im-
portant in practice. We sample from a continuous two-
parameter distribution

p(dX| l, a-) = h (x- dx
a' a (47)

where h(y) is a non-negative and normalized function, and
consider the following problem.

Problem 1: Given a sample {xI ... Xn I, estimate , anid
a. The problem is indeterminate, both mathematically and
conceptually, until we introduce a definite prior distribu-
tion

f(u, a-) du da- (48)

but if we merely specify "complete initial ignorance," this
does not seem to tell us which functionf(u, a-) to use.
Now what do we mean by the statement that we are

completely ignorant of u and a-, except for the knowledge
that , is a location parameter and a- a scale parameter?
If we know the sampling distribution (47), we can hardly
be ignorant of at least that much. To answer this, we might
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reason as follows. If a change of scale can make the problem
appear in any way different to us, then we were not com-
pletely ignorant; we must have had some kind of prior
knowledge about the absolute scale of the problem. Like-
wise, if a shift of location can make the problem appear in
any way differenit, then it must be that we had some kind of
prior knowledge about location. In other words, complete
ignorance of a location and scale parameter is a state of
knowledge such that a change of scale and a shift of loca-
tion does not change that state of kinowledge. Suppose,
therefore, that we carry out a change of variables (x, u, a)

(x', ,u', a') according to

I' = y + b

a' =aa- (49)

x-,u' = a(x -,)
where 0 < a < a,- a) < b < co. The distribution (47)
expressed in the new variables is unchanged:

p(dx'IM', a') = h ( at , atL)d (50)

but the prior distribution is changed to g(,', a') d,u' da'
where from the Jacobian of the transformation (49)

g(,u', a') = a-l f(,u, a-). (51)
Now let us consider a second problem.
Problem 2: Given a sample {xl'... xn},estimatetand

a'. If we are completely ignorant in the preceding sense,
then we must consider Problems 1 and 2 as entirely equiva-
lent, for they have identical sampling distributions and our
state of prior knowledge about 4' and a' in Problem 2 is
exactly the same as for and a- in Problem 1. But our basic
desideratum of consistency demands that in two problems
where we have the same prior information, we should as-
sign the same prior probabilities. Therefore, f and g must be
the same function:

f(1u, a) = g(,t a-) (52)
whatever the values of (a,b). But the form of the prior is
now uniquely determined, for combining (49), (51), and
(52), we see that f(,u, a) must satisfy the functional equa-
tion

f(,u, a) = a f(, + b, a a) (53)

whose general solution is

f(U a-) =
(const) (54)

which is the Jeffreys rule.
As another example, not very different mathematically

but differently verbalized, consider a Poisson process. The
probability that exactly n events will occur in a time inter-
val t is

p(nl X, t) = e-"t (Xt)

and by observing the number of events we wish to estimate
the rate constant X. We are initially completely ignorant of
X except for the knowledge that it is a rate constant of
physical dimensions (seconds)-', i.e., we are completely
ignorant of the absolute time scale of the process.

Suppose, then, that two observers, M\Jr. X and Mir. X',
whose watches run at different rates so their measurements
of a given interval are related by t = qt', conduct this ex-
periment. Since they are observing the same physical ex-
periment, their rate constants must be related by Xt' =
Xt, or V' = qX. They assign prior distributions

p(dxIX) = f(X) dX

p(dX'IX') = g(X') dV'
(56)

(57)

and if these are mutually consistent (i.e., they have the
same content), it must be that f(X) dX = g(X') dA'; or
f(X) = q g(X'). But if Mr. X and Mr. X' are both completely
ignorant, then they are in the same state of knowledge, and
so f and g must be the same function: f(X) = g(X). Combin-
ing these relations gives the functional equation f(X) =

qf (qX) or

(58)

To use any other prior than this will have the consequence
that a change in the time scale will lead to a change in the
form of the prior, which would imply a different state of
prior knowledge; but if we are completely ignorant of the
time scale, then all time scales should appear equivalent.
As a third and less trivial example, where intuition did

not anticipate the result, consider Bernoulli trials with an
unknown probability of success. Here the probability of
success is itself the parameter 0 to be estimated. Given 0,
the probability that we shall observe r successes in n
trials is

p(rln, 0) = or (1 - 0)n-t (59)

and again the question is: What prior distribution f(0) do
describes "complete initial ignorance" of 0?

In discussing this problem, Laplace followed the example
of Bayes and answered the question with that famous
sentence: "When the probability of a simple event is un-
known, we may suppose all values between 0 and 1 as
equally likely." In other words, Bayes and Laplace used
the uniform prior fB (0) = 1. However, Jeffreys [18] and
Carnap [27] have noted that the resulting rule of succes-
sion does not seem to correspond well with the inductive
reasoning which we all carry out intuitively. Jeffreys sug-
gested that f(O) ought to give greater weight to the end-
points 0 = 0,1 if the theory is to account for the kind of
inferences made by a scientist.

For example, in a chemical laboratory we find a jar
containing an unknown and unlabeled compound. We are
at first completely ignorant as to whether a small sample of
this compound will dissolve in water or not. But having
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observed that one small sample does dissolve, we infer
immediately that all samples of this compound are water
soluble, and although this conclusion does not carry quite
the force of deductive proof, we feel strongly that the
inference was justified. Yet the Bayes-Laplace rule leads
to a negligibly small probability of this being true, and
yields only a probability of 2/3 that the next sample tested
will dissolve.
Now let us examine this problem from the standpoint of

transformation groups. There is a conceptual difficulty
here, since f(0) dO is a "probability of a probability."
However, it can be removed by carrying the notion of a
split personality to extremes; instead of supposing that
f(6) describes the state of knowledge of any one person,
imagine that we have a large population of individuals who
hold varying beliefs about the probability of success, and
that f(6) describes the distribution of their beliefs. Is it
possible that, although each individual holds a definite
opinion, the population as a whole is completely ignorant
of 6? What distribution f(6) describes a population in a
state of total confusion on the issue?

Since we are concerned with a consistent extension of
probability theory, we must suppose that each individual
reasons according to the mathematical rules (Bayes'
theorem, etc.) of probability theory. The reason they hold
different beliefs is, therefore, that they have been given
different and conflicting information; one man has read
the editorials of the St. Louis Post-Dispatch, another the
Los Angeles Times, one has read the Daily Worker,
another the National Review, etc., and nothing in prob-
ability theory tells one to doubt the truth of what he has
been told in the statement of a problem.
Now suppose that, before the experiment is performed,

oine more definite piece of evidence E is given simultane-
ously to all of them. Each individual will change his state of
belief according to Bayes' theorem; MIr. X, who had pre-
viously held the probability of success to be

0 = p(SIX) (60)

will change it to

6'= p (SIE, X) =
p(S|X) p(EI|SX)

p(E|SX) p(SIX) + p(EIFX) p(FIX)

If the population as a whole can learn nothing from this
new evidence, then it would seem reasonable to say that
the population has been reduced, by conflicting propaganda,
to a state of total confusion on the issue. We therefore
define the state of "total confusion" or "complete igno-
rance" by the condition that after the transformation (62),
the number of individuals who hold beliefs in any given
range 01 < 0 < 02 is the same as before.
The mathematical problem is again straightforward. The

original distribution of beliefs f(6) is shifted by the trans-
formation (62) to a new distribution g (0') with

f(0) dO = g(O') dO' (64)

and, if the population as a whole learned nothing, then f
and g nmust be the same function:

f(0) = g(0). (65)

Combining (62), (64), and (65), we find that f(0) must
satisfy the functional equation

a f(I+) = (1-±0+ a)2f(6). (66)

This may be solved directly by eliminating the a between
(62) and (66) or, in the more usual manner, by differentiat-
ing with respect to a and setting a = 1. This leads to the
differential equation

0(1 - 0) f'() = (20 - 1) f()

whose solution is

f(0) (const)
0(1- )

(67)

(68)

which has the qualitative property anticipated by Jeffreys.
Now that the imaginary population of individuals has
served its purpose of revealing the transformation group
(62) of the problem, let them coalesce again into a single
mind (that of the statistician who wishes to estimate 0),
and let us examine the consequences of using (68) as our
prior distribution.

If we have observed r successes in n trials, then from
(59) and (68) the posterior distribution of 0 is (provided
thatr > 1, - r > 1)

(61)

where p(F|X) = 1 - p(S|X) is his prior belief in probabil-
ity of failure. This new evidence thus generates a mapping
of the parameter space 0 < 6 < 1 onto itself, given from
(61) by

6'- au

1 -6+ad

where

p(E|SX)

p(E|FX)

p(d6jr,n) = (n-i1)!
(r - 1)! (n - r - 1)!

This distribution has expectation value and variance

(0) =
r

= f
n

(62)
2 =

(70)

(71)f(l -_f
n+ 1 i

Thus the "best" estimate of the probability of success, by
(63) the criterion of quadratic loss function, is just equal to the
(63) observed frequency of success f; and this is also equal to
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the probability of success at the next trial, in agreement
with the intuition of everybody who has studied Bernoulli
trials. On the other hand, the Bayes-Laplace uniform
prior would lead instead to the mean value (O)B = (r + 1)/
(n + 2) of the rule of succession, which has always seemed
a bit peculiar.

For interval estimation, numerical analysis shows that
the conclusions drawn from (69) are for all practical pur-
poses the same as those based on confidence intervals
[i.e., the shortest 90-percent confidence interval for 0 is
nearly equal to the shortest 90-percent posterior probability
interval determined from (69) ]. If r >> 1 and (n - r) >> 1,
the normal approximation to (71) will be valid, and the
100P percent posterior probability interval is simply
(f i qu), where q is the (1 + P)/2 percentile of the normal
distribution; for the 90-, 95-, and 99-percent levels, q =
1.645, 1.960, and 2.576, respectively. Under conditions
where this normal approximation is valid, differences be-
tween this result and the exact confidence intervals are
generally less than the differences between various pub-
lished confidence interval tables, which have been calcu-
lated from different approximation schemes.

If r = (n - r) = 1, (69) reduces to p(dO r, n) = dO, the
uniform distribution which Bayes and Laplace took as
their prior. Therefore, we can now interpret the Bayes-
Laplace prior as describing not a state of complete igno-
rance, but the state of kniowledge in which we have observed
one success and one failure. It thus appears that the
Bayes-Laplace choice will be the appropriate prior if the
prior information assures us that it is physically possible
for the experiment to yield either a success or a failure, while
the distribution of complete ignorance (68) describes a
"pre-prior" state of knowledge in which we are not even sure
of that.

If r = 0 or r = n, the derivation of (69) breaks down and
the posterior distribution remains unnormalizable, pro-
portional to 0-1 (1 - 0)f-l or On-l (1 - )-l, respec-
tively. The weight is concentrated overwhelmingly on the
values 0 = 0 or 0 = 1. The prior (68) thus accounts for
the kind of inductive inferences noted in the case of the
chemical, which we all make intuitively. However, once
we have seen at least one success and one failure, then we
know that the experiment is a true binary one, in the sense
of physical possibility, and from that point on all posterior
distributions (69) remain normalized, permitting definite
inferences about 0.
The transformation group method therefore yields a

prior which appears to meet the common objections raised
against the Laplace rule of succession; but we also see that
whether (68) or the Bayes-Laplace prior is appropriate
depends on the exact prior information available.
To summarize the above results: if we merely specify

complete initial ignorance, we cannot hope to obtain any
definite prior distribution, because such a statement is too
vague to define any mathematically well-posed problem.
We are defining what we mean by complete ignorance far
more precisely if we can specify a set of operations which

we recognize as transforming the problem into an equiva-
lent one, and the desideratum of consistency then places
nontrivial restrictions on the form of the prior.

VIII. TRANSFORMATION GROUPs-DISCUSSION
Further analysis shows that, if the number of indepen-

dent parameters in the transformation group is equal to the
number of parameters in the statistical problem, the "fun-
damental domain" of the group [20] reduces to a point,
and the form of the prior is uniquely determined; thus
specification of such a transformation group is an exhaus-
tive description of a state of knowledge.

If the number of parameters in the transformation group
is less than the number of statistical parameters, the funda-
mental domain is of higher dimensionality, and the prior
will be only partially determined. For example, if in the
group (49) we had specified only the change of scale opera-
tion and not the shift of location, repetition of the argu-
ment would lead to the priorf(,i, o) = v- k(,), where k(,u)
is an arbitrary function.

It is also readily verified that the transformation group
method is consistent with the desideratum of invariance
under parameter changes mentioned in Section VI, i.e.,
that while the form of the prior cannot be invariant under
all parameter changes, its content should be. If the trans-
formation group (49) had been specified in terms of some
other choice of parameters (a, ,B), the form of the trans-
formation equations and functional equations would, of
course, be different, but the prior to which they would lead
in the (a, () space would be just the one that we obtain by
solving the problem in the (,, a) space and transforming
the result to the (a, (3) space by the usual Jacobian rule.
The method of reasoning illustrated here is somewhat

reminiscent of Laplace's "principle of indifference." How-
ever, we are concerned here with indifference between prob-
lems, rather than indifference between events. The
distinction is essential, for indifference between events is a
matter of intuitive judgment on which our intuition often
fails even when there is some obvious geometrical symmetry
(as Bertrand's paradox shows). However, if a problem is
formulated in a sufficiently careful way, indifference be-
tween problems is a matter that is determined by the state-
ment of a problem, independently of our intuition; none of
the preceding transformation groups corresponded to any
particularly obvious geometrical symmetry.

AMore generally, if we approach a problem with the chari-
table presumption that it has a definite solution, then every
circumstance left unspecified in the statement of the prob-
lem defines an invariance property (i.e., a transformation
to an equivalent problem) which that solution must have.
Recognition of this leads to a resolution of the Bertrand
paradox; here we draw straight lines "at random" inter-
secting a circle and ask for the distribution of chord lengths.
But the statement of the problem does not specify the exact
position of the circle; therefore, if there is any definite
solution, it must not depend on this circumstance. The
condition that the solution be invariant under infinitesimal
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displacements of the circle relative to the random straight
lines uniquely determines the solution.

In such problems, furthermore, the transformation
group method is found to have a frequency correspondence
property rather like that of the maximum-entropy princi-
ple. If (as in the Bertrand problem) the distribution sought
can be regarded as the result of a random experiment, then
the distribution predicted by invariance under the trans-
formation group is by far the most likely to be observed
experimentally, because it requires by far the least "skill ;"
consistently to produce any other would require a "micro-
scopic" degree of control over the exact conditions of the
experiment. Proof of the statements in the last two para-
graphs will be deferred to a later article.
The transformation group derivation enables us to see

the Jeffreys prior probability rule in a new light. It has,
perhaps, always been obvious that the real justification of
the Jeffreys rule cannot lie merely in the fact that the pa-
rameter is positive. As a simple example, suppose that A is
known to be a location parameter; then both intuition and
the preceding analysis agree that a uniform prior density is
the proper way to express complete ignorance of ,u. The
relation u = 0-_ -1 defiuies a 1: 1 mapping of the region
(- oo < A < cx) onto the region (0 < 0 < co); but the
Jeffreys rule cannot apply to the parameter 0, consistency
demanding that its prior density be taken proportional to
d, = (1 + a-2) dO. It appears that the fundamental justi-
fication of the Jeffreys rule is not merely that a parameter
is positive, but that it is a scale parameter.
The fact that the distributions representing complete

ignorance found by transformation groups cannot be nor-
malized may be interpreted in two ways. One can say that
it arises simply from the fact that our formulation of the
notion of complete ignorance was an idealization that does
not strictly apply in any realistic problem. A shift of loca-
tion from a point in St. Louis to a point in the Andromeda
nebula, or a change of scale from the size of an atom to the
size of our galaxy, does not transform any problem of
earthly concern into a completely equivalent one. In
practice we will always have some kind of prior knowledge
about location and scale, and in consequence the group
parameters (a, b) cannot vary over a truly infinite range.
Therefore, the transformations (49) do not, strictly speak-
ing, form a group. However, over the range which does ex-
press our prior ignorance, the above kind of arguments still
apply. Within this range, the functional equations and the
resulting form of the prior must still hold.

However, our discussion of maximum entropy shows a
more constructive way of looking at this. Finding the
distribution representing complete ignorance is only the
first step in finding the prior for any realistic problem. The
pre-prior distribution resulting from a transformation
group does not strictly represent any realistic state of
knowledge, but it does define the invariant measure for our
parameter space, without which the problem of finding a
realistic prior by maximum entropy is mathematically
indeterminate.

IX. CONCLUSION

The analysis given here provides no reason to think that
specifying a transformation group is the only way in which
complete ignorance may be precisely defined, or that the
principle of maximum entropy is the only way of convert-
ing testable information into a prior distribution. Further-
more, the procedures described here are not necessarily
applicable in all problems, and so it remains an open ques-
tion whether other approaches may be as good or better.
However, before we would be in a position to make any
comparative judgments, it would be necessary that some
definite alternative procedure be suggested.
At present, lacking this, one can only point out some

properties of the methods here suggested. The class of
problems in which they can be applied is that in which 1)
the prior information is testable; and 2) in the case of a
continuous parameter space, the statement of the problem
suggests some definite transformation group which estab-
lishes the invariant measure. We note that satisfying
these conditions is, to a large extent, simply a matter of
formulating the problem more completely than is usually
done.

If these conditions are met, then we have the means for
incorporating prior information into our problem, which is
independent of our choice of parameters and is completely
impersonal, allowing no arbitrary choice on the part of the
user. Few orthodox procedures and, to the best of the
author's knowledge, no other Bayesian procedures, enjoy
this complete objectivity. Thus while the above criticisms
are undoubtedly valid, it seems apparent that this analysis
does constitute an advance in the precision with which we
are able to formulate statistical problems, as well as an
extension of the class of problems in which statistical
methods can be used. The fact that this has proved possible
gives hope that further work along these lines in partic-
ular, directed toward learning how to formulate problems
so that condition 2) is satisfied-may yet lead to the final
solution of this ancient but vital puzzle, and thus achieve
full objectivity for Bayesian methods.
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Te WIdget Problem Revisited

MYRON TRIBUS AND GARY FITTS

Abstract-The Jaynes "widget problem" is reviewed as an ex-
ample of an application of the principle of maximrum entropy in the
making of decisions. The exact solution yields an unusual proba-
bility distribution. The problem illustrates why some kinds of
decisions can be made intuitively and accurately, but would be
difficult to rationalize without the principle of maximum entropy.

INTRODUCTION

THE WIDGET problem, introduced by Jaynes [1 ], is
paraphrased as follows:

Suppose you are the manager of a widget factory which
has adopted the advertising slogan, "Your order filled in
24 hours or your money back." Your job is to attempt to
anticipate the orders for widgets each day and thereby
to protect the company against loss. For complex tech-
nological reasons, which need not be explained here,
widgets are made at the rate of 200 per day and must all
be painted one color: red, yellow, or green. If today you
decide to paint the widgets green, tomorrow you may
decide to paint them yellow, but all 200 must be painted
the same color. Your sole task is to decide what color to
paint the day's run of widgets.
Suppose you look into the storeroom and discover that

there are some widgets already on hand. Presumably
these are widgets left over from previous days' production.
The data from the stockroom are given in Table I.

M\anuscript received January 2, 1968. This research was supported
by a grant from the National Science Foundation.
The authors are with the Thayer School of Engineering, Dart-
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TABLE I
FIRST STATE OF KNOWLEDGE

Red Y Yellow Green
In Stock 100 1.50 50

Given only the data in Table I, what would you decide?
Call this decision Dl.'I
Of course, if you could obtain more information, you

might come to another decision. Suppose, therefore, that
you consulted more of the company records and found out
how many widgets per day were being ordered. That is,
you found out how many widgets were ordered last year
and divided by the total number of days orders were
taken. Table 11 gives the second state of knowledge.

TABLE II
SECOND STATE OF KNOWLEDGE

Red Yellow Green
In Stock 100 150 50

Average Daily Order 50 100 10

With this information, you might decide to change your
mind from the decision you made with only the first state
of knowledge. With the second state of knowledge, what
would you decide? Call this decision D2.2

I Most people choose DI = green.
2 Most, people choose D2 = Yellow.
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