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In this paper we review the concepts of Bayesian evidence and Bayes factors, also known as log odds 
ratios, and their application to model selection. The theory is presented along with a discussion of 
analytic, approximate and numerical techniques. Specific attention is paid to the Laplace approximation, 
variational Bayes, importance sampling, thermodynamic integration, and nested sampling and its recent 
variants. Analogies to statistical physics, from which many of these techniques originate, are discussed 
in order to provide readers with deeper insights that may lead to new techniques. The utility of 
Bayesian model testing in the domain sciences is demonstrated by presenting four specific practical 
examples considered within the context of signal processing in the areas of signal detection, sensor 
characterization, scientific model selection and molecular force characterization.
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1. Introduction

The application of model-based reasoning techniques employ-
ing Bayesian probability theory has recently found wide use in 
signal processing, and in the physical sciences in general [1–6]. 
In such an approach, it is critical to be able to statistically com-
pare the probability of one model to another. This is performed by 
computing the Bayesian evidence of the two models and compar-
ing them by forming a ratio, which is often referred to as a Bayes 
factor or the odds ratio.

In this paper, we present an overview of the theory behind 
Bayesian evidence, discuss various methods of computation, and 
demonstrate the application in four practical examples of current 
interest more closely related to signal processing. We do not aim 
to cover all of the techniques and applications, as there exists 
a great number of excellent treatments spanning several decades 
[7–9,1,10–13,2,14,5,15–17,4] as well as a wide variety of appli-
cations spread across a great number of fields, such as acoustics 
[18–20], astronomy, astrophysics and cosmology [21–31], chem-
istry [32], computer science and machine learning [33,34], neu-
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ral networks [35–37], neuroscience [38–41], nuclear and particle 
physics [42–44], signal processing [45–51] systems engineering 
[52–54], and statistics in general [55,56].

2. Probability

Logical statements can imply other logical statements. Prob-
ability theory [57,58,1,16,2,17,59,14,5,6] allows one to generalize 
the concept of implication by providing a measure of the degree 
of implication among logical statements [60,61]. More specifically, 
probability is a scalar measure that quantifies, within a topic of 
discourse, the degree to which one logical statement, represent-
ing a state of knowledge, implies another [62,63].1 As a scalar 
measure, probability enables one to rank logical statements with 
respect to a given context or premise.

The utility of probability theory becomes apparent when one 
considers the degree to which a statement considering a set of sev-
eral hypotheses or models, M , implies a joint statement proposing 
a particular model m in conjunction with additional information or 
data, d, which we write as P (m, d|M). The product rule, which can 

1 This is a relatively new interpretation of probability that has significant advan-
tages over older concepts such as the frequency of occurrences of events, the degree of 
truth or the degree of belief.
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be derived as a consequence of basic symmetries of Boolean logic 
[60–63], enable one to express this probability in two ways

P (m,d|M) = P (m|M)P (d|m, M) (1)

= P (d|M)P (m|d, M). (2)

These two expressions can be equated

P (m|M)P (d|m, M) = P (d|M)P (m|d, M) (3)

and rearranged resulting in the familiar Bayes’ theorem

P (m|d, M) = P (m|M)
P (d|m, M)

P (d|M)
, (4)

where the posterior probability P (m|d, M) can be expressed in 
terms of the product of the prior probability P (m|M) with a data-
dependent term consisting of the ratio of the likelihood P (d|m, M)

to the evidence P (d|M). It is in this sense that one can think of 
Bayes’ theorem as a learning rule where one’s prior state of knowl-
edge about the problem, represented by the prior probability, is 
updated by a data-dependent term resulting in a posterior proba-
bility that depends both on the prior state of knowledge as well as 
the data.

Both the prior probability and the likelihood must be assigned 
based on any and all additional information that one may possess 
about the problem. This is not a deficit or drawback of probabil-
ity theory. Instead it is a strength since symmetries only serve 
to constrain manipulation of probabilities to the sum and prod-
uct rules. This leaves free the probability assignments resulting 
in a theory of inductive logic that can be applied to any partic-
ular inference problem. The dependence of these probabilities on 
problem-specific prior information is often indicated by including 
the symbol I to the right of the solidus.2 For example, this is done 
by writing the prior probability P (m|M) as P (m|M, I).

While the posterior probability over the space of models M
fully quantifies all that is known about the problem, it is often 
common practice to summarize what is known by focusing on a 
particular model m that maximizes the posterior probability, such 
that this model is most implied by the data given the prior infor-
mation. Such a model is referred to as the most probable model 
or mode (within the context defined by the space of models M), 
or the maximum a posteriori (MAP) estimate. Often the space of 
models M to be considered is a parameterized space where each 
model m is represented by a set of particular parameter values 
that act as coordinates in the space. In this case, one can consider 
summarizing the posterior using the model given by the mean pa-
rameter values found using the posterior. Either way, when the 
models in the space M are parameterized, selecting a particular 
model given the data and prior information amounts to a parame-
ter estimation problem.

The evidence, which in parameter estimation problems acts 
mainly as a normalization factor, can be obtained by summing or 
integrating (marginalizing) over all possible models m in the set of 
models M

P (d|M, I) =
∫

dm P (m,d|M, I) (5)

=
∫

dm P (m|M, I)P (d|m, M, I), (6)

which is the reason that the evidence is often referred to as the 
marginal likelihood.

2 This notation goes back to Jaynes [1] and has been adopted in several prominent 
textbooks in the physical sciences [64,17,2,6].
We can refer to a set of models, M , as a particular theory. Given 
two competing theories M1 or M2 one can compare the poste-
rior probability P (M1|d, I) to the posterior probability P (M2|d, I), 
where, among additional prior information, I represents the fact 
that theories M1 and M2 are among those to be considered. In 
general, both theories will result in non-zero probabilities. How-
ever, the more probable theory can be determined by considering 
the ratio of their posterior probabilities. We can examine this by 
considering the ratio of joint probabilities of the sets of models 
M1 and M2 and the data d and then using the product rule to 
write the joint probability in two ways

P (M1,d|I)
P (M2,d|I) = P (M1,d|I)

P (M2,d|I) (7)

P (d|I)P (M1|d, I)

P (d|I)P (M2|d, I)
= P (M1|I)P (d|M1, I)

P (M2|I)P (d|M2, I)
(8)

P (M1|d, I)

P (M2|d, I)
= P (M1|I)

P (M2|I)
P (d|M1, I)

P (d|M2, I)
(9)

so that the ratio of the posterior probabilities of the two theo-
ries is proportional to the ratio of their respective evidences. The 
proportionality becomes an equality in the case where the prior 
probabilities of the two theories are equal. This leads to the con-
cept of the Bayes factor or odds ratio where we define

OR = P (d|M1, I)

P (d|M2, I)
(10)

or, equivalently, the log odds ratio

log OR = log P (d|M1, I) − log P (d|M2, I). (11)

With this definition, we can write the ratio of posterior probabili-
ties for the two different theories M1 and M2 in terms of the odds 
ratio

P (M1|d, I)

P (M2|d, I)
= P (M1|I)

P (M2|I) × OR, (12)

where the two are equal when the ratio of the prior probabilities 
of the two theories are equal.

In the case of parameter estimation problems, the Bayesian 
evidence plays a relatively minor role as a normalization factor. 
However, in problems where two theories are being tested against 
one another, which is often called a model selection problem,3 the 
ratio of evidences is the relevant quantity to consider. In some spe-
cial cases, the integrals can be solved analytically as described in 
[8,10] and demonstrated below in Section 5.1.

3. Evidence, model order, and priors

It is instructive to consider how the evidence (6) varies as a 
function of the considered model order as well as the prior infor-
mation one may possess about the model. We begin by considering 
a model consisting of a single parameter x, for which we have as-
signed a uniform prior probability over an interval [xmin, xmax] of 
width �x = xmax − xmin. We can define the effective width δx ≤ �x
of the likelihood over the prior range as

δx
.= 1

Lmax

xmax∫
xmin

dx P (d|x, M, I), (13)

3 The terminology may be confusing since the term ‘model selection’ seems to 
refer to the process of selecting a particular model; whereas, it refers to selecting 
one set of models, or theory, over another.
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where Lmax is the value of the likelihood P (d|x, M, I) attained at 
the maximum likelihood estimate x = x̂. The evidence of the model 
amounts to

Z ≡ P (d|M, I) = 1

�x

xmax∫
xmin

dx P (d|x, M, I), (14)

which using the definition in (13) can be conveniently expressed 
in terms of the prior width �x and effective likelihood width δx
by [64, pp. 63–65]

Z = Lmax
δx

�x
. (15)

Thus we can write the evidence as a product of the maximum of 
the likelihood (the best achievable goodness-of-fit) and an Occam 
factor W :

Z = Lmax W (16)

where 0 ≤ W ≤ 1 is formally defined as

W = Z

Lmax
=
∫

dx P (x|M, I)
P (d|x, M, I)

Lmax
. (17)

For models with a single adjustable parameter the Occam factor 
is the ratio of the width of the likelihood over the prior range to 
the width of the prior: W = δx/�x. For multiple model parame-
ters this generalizes to the ratio of the volume occupied by those 
models that are compatible with both data and prior over the prior 
accessible volume.

By making the prior broader we pay in evidence. It is in this 
sense that Bayesian probability theory embodies Occam’s razor: 
“Entities are not to be multiplied without necessity.” If we increase 
the flexibility of our model by the introduction of more model pa-
rameters, we reduce the Occam factor. Let’s for simplicity assume 
that every additional parameter is also uniform over an interval of 
length �x and that there are K such parameters xk . Then beyond 
a certain model order K , we will achieve a perfect fit of the data 
upon which we cannot improve the likelihood any further. Because 
the Occam factor scales as (δx/�x)K , it will disfavor a further in-
crease in model order.

Consider a Gaussian likelihood function, which is normalized so 
that it integrates to unity. If the data d = {d1, . . . , dn} are modeled 
as independent observations, the likelihood, assuming a standard 
deviation σ , is

P (d|x, M, I) = (2πσ 2)−n/2 exp
{
− n

2σ 2
[(x − d)2 + v]

}
(18)

where d = 1
n

∑
i di is the sample average and v = 1

n

∑
i(di − d)2 the 

sample variance. Maximum likelihood is obtained at x̂ = d achiev-
ing a likelihood of Lmax = (e−v/σ 2

/2πσ 2)n/2. The evidence is

P (d|M, I) = Lmax

√
2π

n

σ

�x

erf
(√n

2
xmax−d

σ

)+ erf
(√n

2
d−xmin

σ

)
2

.(19)

For d ∈ [xmin, xmax] and σ small or n large, we can ignore the last 
factor involving the error function. The Occam factor is essentially √

2πσ/�x
√

n. If d falls outside the support of the prior (d < xmin
or d > dmax), the evidence decreases rapidly reflecting the discrep-
ancy between our prior assumptions and the actual observations.

Let us compare a model M0 that has no adjustable parameter 
and a model M1 with a single adjustable parameter x by comput-
ing the odds ratio:

OR = P (d|M0, I) ≈ P (D|M0, I) �x
(20)
P (d|M1, I) P (D|x̂, M1, I) δx
The odds ratio is comprised of two factors: the ratio of the likeli-
hoods

P (D|M0, I)

P (D|x̂, M1, I)

and the Occam factor �x/δx. The likelihood ratio is a classical 
statistic in frequentist model selection. If we only consider the like-
lihood ratio in model comparison problems, we fail to acknowledge 
the importance of Occam factors.

4. Numerical techniques

In general, the evidence, which is found by integrating the prior 
times the likelihood (6) over the entire parameter space, cannot 
be solved analytically.4 This requires that we use numerical tech-
niques to estimate the evidence. Straightforward estimation of the 
evidence integral directly from posterior sampling, such as in [65], 
proves to be quite challenging in general, especially in the case 
of multimodal distributions arising from mixture models or high-
dimensional spaces. While a number of sophisticated problem-
specific techniques have been developed to handle such difficulties 
[66–68], there is a need for more general widely-applicable tech-
niques that require little to no fine tuning.

Other methods, such as Reversible Jump Markov Chain Monte Carlo
(RJMCMC) treat the model order as a model parameter [69–71]. 
However, such techniques typically encounter serious difficulties 
with inefficient model-switching moves. The difficulties these more 
direct techniques experience are especially problematic in high-
dimensional spaces and in problems where the likelihood calcu-
lations are expensive, such as in the case of large data sets or 
complex forward models.

This has resulted in the development of a rather sophisticated 
array of computational techniques. Here we briefly review some 
of the more popular methods, pointing the interested readers to 
additional excellent resources and reviews, such as [9] and [72], 
and conclude with a focus on the more recent methods of nested 
sampling and its cousin MultiNest, which are used in three of the 
examples provided in the following section.

4.1. Laplace approximation

The Laplace Approximation, also known as the Saddle-Point Ap-
proximation [73], is a simple and useful method for approxi-
mating a unimodal probability density function with a Gaussian 
[16,74,4,6]. As such, the Laplace approximation forms the basis of 
more advanced techniques, such as Gull and MacKay’s Evidence 
Framework [75,35].

Consider a function p(x), which has a peak at x = x0. One can 
write the Taylor series expansion of the logarithm of the probabil-
ity density ln p(x) about x = x0 to second order as

ln p(x) � ln p(x0) + d

dx
ln p(x)

∣∣∣∣
x=x0

(x − x0)

+ 1

2

d2

dx2
ln p(x)

∣∣∣∣
x=x0

(x − x0)
2 + . . . , (21)

which can be simplified to

ln p(x) � ln p(x0) + 1

2

d2

dx2
ln p(x)

∣∣∣∣
x=x0

(x − x0)
2 + . . . , (22)

4 A rare exception is given by the first example presented in Section 5.1 where 
an analytical solution is obtained.



K.H. Knuth et al. / Digital Signal Processing 47 (2015) 50–67 53
since the first derivative of ln p(x) evaluated at the peak is zero. By 
defining σ 2 to be minus the inverse of the local curvature at the 
peak

σ 2 =
(

−1

2

d2

dx2
ln p(x)

∣∣∣∣
x=x0

)−1

, (23)

we can rewrite (22) as

ln p(x) � ln p(x0) − 1

2σ 2
(x − x0)

2 + . . . . (24)

Taking the exponential of both sides results in an un-normalized 
approximation for p(x)

p(x) � p(x0)exp

[
− 1

2σ 2
(x − x0)

2
]

, (25)

which would have as its normalization factor

Z = p(x0)
√

2πσ 2. (26)

If the function p(x) is taken to be the product of the prior proba-
bility and the likelihood, then, the normalization factor (26) is an 
approximation of the evidence.

In N dimensions, we expand the function ln p(x) as

ln p(x) � ln p(x0) − 1

2
(x − x0)

T A(x − x0) + . . . , (27)

where A is an N × N matrix, known as the Hessian, with matrix 
elements given by

Aij = − d2

dxidx j
ln p(x)

∣∣∣∣
x=x0

. (28)

The approximation of p(x) is then given by

p(x) � 1

Z
exp

[
−1

2
xT Ax

]
(29)

where the normalization factor is

Z = p(x0)

√
(2π)N

det A
. (30)

Again, if the function p(x) is defined by the product of the prior 
and the likelihood, then Z is the approximation to the evidence. 
This method requires that the peak of the distribution be identified 
and the Hessian estimated either analytically or numerically.

The Laplace approximation has been very useful in perform-
ing inference on latent Gaussian models, such as Gaussian pro-
cesses [76]. The Integrated Nested Laplace Approximation (INLA) 
[77,78] can be used to compute the posteriors of the model param-
eters in the case of structured additive regression models where 
the predictor depends on a sum of functions of a set of covariates, 
and the number of hyperparameters is small (≤ 6). This is accom-
plished by setting up a grid of hyperparameter values where the 
posterior of the hyperparameter values given the data has been ap-
proximated using the Laplace approximation. Then the Laplace ap-
proximation is used to compute the marginal posteriors given the 
data and the hyperparameter values across the grid. The product of 
the hyperparameter posteriors (given the data) and the marginals 
(given the data and the hyperparameters) can then be numeri-
cally integrated over the hyperparameters to obtain the desired 
posterior marginals. Another method to approximate the marginals 
based on expectation propagation [79] has been proposed by Cseke 
and Heskes [80]. They demonstrated that this method is typically 
more accurate than INLA and works in cases where the Laplace 
approximation fails.
4.2. Importance sampling

Importance Sampling [81] allows one to find expectation values 
with respect to one distribution p(x) by computing expectation 
values with respect to a second distribution q(x) that is easier to 
sample from. The expectation value of f (x) with respect to p(x) is 
given by

〈 f (x)〉p =
∫

f (x)p(x)dx∫
p(x)dx

. (31)

Note that one can write the distribution p(x) as p(x)
q(x) q(x) where the 

only theoretical requirement is that q(x) must be non-zero wher-
ever p(x) is non-zero. This allows one to rewrite the expectation 
value above as

〈 f (x)〉p =
∫

f (x) p(x)
q(x) q(x)dx∫ p(x)

q(x) q(x)dx
(32)

=

〈
f (x) p(x)

q(x)

〉
q〈

p(x)
q(x)

〉
q

, (33)

which can be approximated with samples from q(x) by

〈 f (x)〉p ≈
∑N

i=1 f (xi)
p(xi)
q(xi)∑N

i=1
p(xi)
q(xi)

, (34)

where the samples x = x1, x2, . . . , xN are drawn from q(x). This 
works well as long as the ratio defined by p(x)/q(x) does not 
attain extreme values. Importance sampling is a generally valid 
method useful even in cases where q(x) is not Gaussian, as long 
as q(x) is easier to sample from than p(x) using techniques such 
as existing random number generators or MCMC.

Importance sampling can be used to compute ratios of evidence 
values in a similar fashion by writing [81]

Z p

Zq
=
∫

p(x)dx∫
q(x)dx

(35)

which can be written as

Z p

Zq
=
∫ p(x)

q(x) q(x)dx∫
q(x)dx

(36)

=
〈

p(x)

q(x)

〉
q

(37)

which can be approximated with samples from q(x) by

〈
p(x)

q(x)

〉
q
≈
∑N

i=1
p2(xi)

q2(xi)∑N
i=1

p(xi)
q(xi)

. (38)

However, again the function p(x) must be close to q(x) to avoid 
extreme ratios, which will cause problems for the numeric inte-
gration.

4.3. Analogy to statistical physics

Techniques for evaluating the evidence can build on numeri-
cal methods in statistical physics because there is a close analogy 
between both fields. A key quantity in equilibrium statistical me-
chanics is the canonical partition function

Z(β) =
∫

dx e−βE(x) (39)
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where x are the configurational degrees of freedom of a system 
governed by the energy E(x) and β is the inverse temperature. 
Because x is typically very high-dimensional, the partition func-
tion can only be evaluated numerically. Instead of computing Z(β)

directly by solving the high-dimensional integral (39), it is conve-
nient to compute the Density of States (DOS)

g(E) =
∫

dx δ(E − E(x)) (40)

where δ is Dirac’s delta function. The partition function and the 
DOS are linked via a Laplace transform

Z(β) =
∫

dE g(E)e−βE . (41)

Therefore, knowing either of the two functions suffices to char-
acterize equilibrium properties of the system and compute, for 
example, free energies and heat capacities.

In a Bayesian application, the model parameters m play the role 
of the system’s degrees of freedom and the negative log likelihood 
can be viewed as an energy function E(m) = − log P (d|m, M, I). For 
a given data set d, we write the DOS as

g(E) =
∫

dm P (m|M, I)δ[E − E(m)]. (42)

The evidence can then be written as a one-dimensional integral 
over the DOS:

P (d|M, I) =
∫

dE g(E) e−E

=
∫

dm P (m|M, I)

∫
dE δ[E + log P (d|m, M, I)] e−E

=
∫

dm P (m|M, I) P (d|m, M, I). (43)

Therefore, knowledge of g(E) allows us to compute the evidence 
in the same way as the canonical partition function (41) can be 
evaluated through a Laplace transform of the DOS [82].

Physics-inspired algorithms for evaluating the evidence aim to 
compute either the partition function Z(β) at β = 1 or the den-
sity of states. The previous class of methods comprises path sam-
pling [83], parallel tempering [84,85], annealed importance sam-
pling [86] and other thermal methods that simulate a modified 
version of the posterior:

[P (d|m, M, I)]β P (m|M, I) (44)

where the likelihood has been raised to a fractional power. By 
letting β vary between zero and one, we can smoothly bridge be-
tween the prior and the posterior. A recent DOS-based algorithm 
called nested sampling [87,88,17,6] is discussed in Section 4.7.

4.4. Path sampling and thermodynamic integration

The method of path sampling is based on the calculation of free 
energy differences in thermodynamics [83]. The method focuses 
on the estimation of the difference between the logarithm of two 
distributions p0 and p1, which depend on model parameters. One 
can connect the two distributions by a “path” through a space of 
distributions by defining what is called the geometric path

p(x|β) ∝ p0(x)1−β p1(x)β (45)

where the parameter β can vary freely from β = 0 to β = 1
so that at the endpoints we have that p(x|β = 0) = p0(x) and 
p(x|β = 1) = p1(x). By letting E = log[p0/p1] we can establish a 
direct relation with the canonical ensemble; the normalizing con-
stant is the partition function:
Z(β) =
∫

dx p0(x)1−β p1(x)β

=
∫

dx p0(x) e−βE(x). (46)

The log partition function can be estimated using samples from 
p(x|β) in the following way. We have

∂β log Z(β) = − 1

Z(β)

∫
dx E(x) p0(x) e−βE(x)

= 〈log[p1/p0]〉β (47)

where 〈·〉β denotes the expectation with respect to the bridging 
distribution p(x|β). Integration of the previous equation yields

log[Z(1)/Z(0)] =
1∫

0

dβ ∂β log Z(β)

=
1∫

0

dβ 〈log[p1/p0]〉β . (48)

By choosing a finely spaced β-path we can approximate the ra-
tio of the normalization constants Z(1)/Z(0) by a sum over the 
expected energy log[p0/p1] (log likelihood ratio) over each of the 
bridging distributions:

log[Z(1)/Z(0)] ≈
∑

i

〈log[p1/p0]〉βi
(βi+1 − βi). (49)

This approach is called thermodynamic integration. It is also possi-
ble to estimate the DOS from samples produced along a thermal 
path bridging between the prior and posterior and thereby obtain 
an alternative estimate of the evidence that is sometimes more ac-
curate than thermodynamic integration [82,89].

If we choose

p0(m) = P (m|M, I) and p1(m) = P (m|M, I) P (d|m, M, I),

we can use path sampling in combination with thermodynamic 
integration to obtain the log-evidence because

Z(0) =
∫

dm p0(m) = 1 and Z(1) =
∫

dm p1(m) = P (d|M, I).

In case we want to compare two models M1, M2 that share the 
same parameters m, we can use thermodynamic integration to es-
timate the log odds ratio (11) by defining

pi−1(m) = P (m|Mi, I) P (d|m, Mi, I) (i = 1,2)

and sampling from the following family of bridging distributions

p(x|β) ∝ [P (m|M1, I) P (d|m, M1, I)]1−β

× [P (m|M2, I) P (d|m, M2, I)]β (50)

For the special case that both models also share the same prior, 
P (m|M1, I) = P (m|M2, I) = P (m|I), this simplifies to

p(m|β) ∝ P (m|I) [P (d|m, M1, I)]1−β [P (d|m, M2, I)]β . (51)

By drawing models from the mixed posterior p(m|β) the log odds 
ratio can be computed directly using thermodynamic integration. 
An open problem relevant to all thermal methods using a geo-
metric path (45) is where to place the intermediate distributions. 
This becomes increasingly difficult for complex systems that show 
a phase transition.

Ensemble Annealing [90], a variant of simulated annealing [91], 
aims to circumvent this problem by constructing an optimal tem-
perature schedule in the course of the simulation. This is achieved 
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by controlling the relative entropy between successive intermedi-
ate distributions: After simulating the system at a current tem-
perature, the new temperature is chosen such that the estimated 
relative entropy between the current and the new distribution is 
constant. Ensemble annealing can be viewed as a generalization 
of nested sampling (see Section 4.7) to general families of bridg-
ing distributions such as the geometric path (45). Ensemble an-
nealing has been applied to various systems showing first- and 
second-order phase transitions such as Ising, Potts, and protein 
models [90].

4.5. Annealed importance sampling

Annealed Importance Sampling (AIS) [86] is closely related to 
other annealing methods such as simulated annealing but does 
not rely on thermodynamic integration. AIS generates multiple in-
dependent sequences of states {x( j)

0 , x( j)
1 , . . . , x( j)

i , . . .} where x( j)
i

is a sample from the i-th intermediate distribution pi bridging 
between the initial distribution p0 and the destination distribu-
tion p1. For example, in case we are using the geometric bridge 
(45) the states follow

x( j)
i ∼ p0(x)1−βi p1(x)βi (52)

where the superscript j enumerates the sequences. Sampling of 
x( j)

i is typically achieved by starting a Markov chain sampler from 
the precursor state x( j)

i−1. Each of the generated sequences is as-
signed an importance weight

w( j) =
∏

i

pi+1(x( j)
i )

pi(x( j)
i )

. (53)

Neal has shown [86] that the average of the importance weights is 
an unbiased estimator of the ratio of the normalizing constants:

Z(1)

Z(0)
≈ 1

M

M∑
j=1

w( j) = 1

M

M∑
j=1

∏
i

pi+1(x( j)
i )

pi(x( j)
i )

. (54)

It is important to note that the annealing sequence is simulated 
multiple times, and that the partition function is obtained from 
the importance weights w( j) by an arithmetic average rather than 
a geometric average. For the special case of the geometric bridge, 
the AIS estimator is
Z(1)

Z(0)
≈ 1

M

∑
j

exp

{∑
i

(βi+1 − βi) log[p1(x( j)
i )/p0(x( j)

i )]
}

. (55)

On the other hand, if we apply thermodynamic integration 
[Eq. (49)] to the sequences sampled during AIS, we obtain

log[Z(1)/Z(0)] ≈
∑

i

(βi+1 − βi)
1

M

∑
j

log[p1(x( j)
i )/p0(x( j)

i )] .
(56)

Both estimators are closely related but not identical. To see this, let 
us rewrite the estimate obtained by thermodynamic integration:

Z(1)

Z(0)
≈ exp

{
1

M

∑
j

∑
i

(βi+1 − βi) log[p1(x( j)
i )/p0(x( j)

i )]
}

(57)

≈ exp

{
1

M

∑
j

log w( j)
}

=
(∏

j

w( j)
)1/M

. (58)

This shows that AIS estimates the ratio of partition functions by 
an arithmetic average over the importance weights, whereas ther-
modynamic integration averages the importance weights w( j) ge-
ometrically. Neal’s analysis as well as results from non-equilibrium 
thermodynamics (e.g. [92]) show that the AIS estimator is valid 
even if the sequences of states are not in equilibrium.
4.6. Variational Bayes

Another technique called Ensemble Learning [93–95], or Varia-
tional Bayes (VB) [96–100,74,101], is named after Feynman’s varia-
tional free energy method in statistical mechanics [102]. As such, 
it is yet another example of how methods developed in thermody-
namics and statistical mechanics have had an impact in machine 
learning and inference.

We consider a normalized probability density Q (m) on the set 
of model parameters m, such that∫

dm Q (m) = 1. (59)

While not obviously useful, the log-evidence can be written as

log P (M|I) =
∫

dm Q (m) log P (M|I). (60)

Using the product rule, this can be written as

log P (M|I) =
∫

dm Q (m) log
P (M,m|I)
P (m|M, I)

(61)

=
∫

dm Q (m) log

[
P (M,m|I)Q (m)

P (m|M, I)Q (m)

]
. (62)

This expression can be broken up into the sum of the negative free 
energy

F (Q (m), P (M,m|I)) =
∫

dm Q (m) log
P (M,m|I)

Q (m)
(63)

and the Kullback–Leibler (KL) divergence

KL[Q (m)‖P (m|M, I)] =
∫

dm Q (m) log
Q (m)

P (m|M, I)
(64)

by

log P (M|I) = F (Q (m), P (M,m|I)) + KL[Q (m)‖P (m|M, I)], (65)

which is the critical concept behind variational Bayes.
The properties of the KL divergence expose an important rela-

tionship between the negative free energy and the evidence. First, 
the KL divergence is zero when the density Q (m) is equal to the 
posterior Q (m) = P (m|M, I). For this reason, Q (m) is referred to 
as the approximate posterior. Furthermore, since the KL divergence 
is always non-negative, we have that

log P (M|I) = max
Q

F (Q (m), P (M,m|I)) ≥ F (Q (m), P (M,m|I))
(66)

so that the negative free energy is a lower bound to the log-
evidence.

The main idea is to vary the density Q (m) (approximate poste-
rior) so that it approaches the posterior P (m|M, I). One cannot do 
this directly through the KL divergence since the evidence, which 
is the normalization factor for the posterior, is not known. Instead, 
by maximizing the negative free energy in (65), which is the same 
as minimizing the free energy, the negative free energy approaches 
the log-evidence and the approximate posterior Q (m) approaches 
the posterior. However, this presents a technical difficulty in that 
the integral for the negative free energy (63) will not be analyt-
ically solvable for arbitrary Q (m). The approach generally taken 
involves a concept from the mean field approximation in statisti-
cal mechanics [103] where a non-factorizable function is replaced 
by one that is factorizable

Q (m) = Q (m0)Q (m1) (67)
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Fig. 1. A: An illustration of the amount of log prior mass log X(L) with a log likelihood greater than log L. Nested sampling relies on forming a nested set of likelihood 
boundaries within which the N walkers are uniformly distributed. As such, nested sampling contracts the prior volume to higher likelihood at a steady rate based on 
log X [17]. On the other hand, tempering methods, such as simulated annealing, advance on high likelihood regions by following the slope d log L

d log X of the curve. B: Tempering 
methods, which slowly turn on the likelihood Lβ with the inverse temperature parameter β , are designed to follow the concave hull of the log likelihood. In situations where 
the slope becomes convex, one must jump from one phase (local maximum in evidence mass) to another, which is why tempering methods typically fail at phase transitions. 
Nested sampling, which contracts the prior volume, is not hampered by such features in the log likelihood curve as a function of prior mass.
where the set of model parameters m can be divided into two dis-
joint sets m0 and m1 so that m0 ∩ m1 = ∅ and m0 ∪ m1 = m.

The negative free energy (63) can then be written as [74]

F =
∫

dm Q (m) log
P (M,m|I)

Q (m)

=
∫ ∫

dm0 dm1 Q (m0)Q (m1) log
P (M,m0,m1|I)
Q (m0)Q (m1)

=
∫

dm0 Q (m0)

[∫
dm1 Q (m1) log P (M,m0,m1|I)

]

−
∫

dm0 Q (m0) log Q (m0) + C

=
∫

dm0 Q (m0)I(m0) −
∫

dm0 Q (m0) log Q (m0) + C

where the constant C consists of terms that do not depend on 
Q (m0) and

I(m0) =
∫

dm1 Q (m1) log P (M,m0,m1|I). (68)

The negative free energy can then be expressed in terms of a 
KL-divergence by writing I(m0) = log(exp(I(m0)))

F = KL[Q (m0)‖exp(I(m0))] + C, (69)

which is minimized when

Q (m0) ∝ exp(I(m0)). (70)

This implies that not only can the posterior be approximated with 
Q (m), but also the analytic form of the component posteriors can 
be determined. This is known as the free-form approximation [74], 
which applies, in general, to the conjugate exponential family of 
distributions [97,104,105], and can be extended to non-conjugate 
distributions [97,106].

Since the negative free energy (69) is a lower bound to the 
log-evidence, the log-evidence can be estimated by minimizing the 
negative free energy, so that the approximate posterior Q (m) ap-
proaches the posterior.

4.7. Nested sampling

Nested sampling [87,88,17,6] relies on stochastic integration to 
numerically compute the evidence of the posterior probability. In 
contrast to the thermal algorithms discussed so far, nested sam-
pling aims to estimate the DOS or rather its cumulative distribu-
tion function

X(L) =
− log L∫
−∞

dE g(E)

=
∫

P (d|m,M,I)>L

dm P (m|M, I) (71)

which calculates the prior mass X ∈ [0, 1] contained in the likeli-
hood contour P (d|m, M, I) > L ≡ e−E . We can now write the evi-
dence integral as

Z =
∞∫

−∞
dE g(E)e−E

=
1∫

0

dX L(X)

≈
∑

i

Li(Xi−1 − Xi) (72)

where the likelihood L(X) is understood as a function of the cu-
mulative DOS or prior mass (71). Because L(X) is unknown for 
general inference problems, we have to estimate it. Nested sam-
pling does this by estimating its inverse function X(L) using N
walkers that explore the prior constrained by a lower/upper bound 
on the likelihood/energy (Fig. 1A). Since X decreases monotonically 
in likelihood, we can sort the unknown prior masses associated 
with each walker by sorting them according to likelihood. The 
walker with worst likelihood will enclose the largest prior mass. 
The maximum mass can be estimated using order statistics:

Xmax ∼ N
X N−1

max

X(L)
(73)

where the walkers have been numbered such that they increase in 
likelihood L1 < L2 < . . . < LN and thus Xmax ≡ X1 > X2 > . . . > XN . 
The worst likelihood L1 will define the lower likelihood bound in 
the next iteration. Walkers 2 to N will, by construction, already 
attain states that are also valid samples from the prior truncated 
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at L1 such that we only have to replace the first walker. This can 
be done by randomly selecting one among the N − 1 surviving 
states and evolving it within the new contour L1 using a Monte 
Carlo procedure. The initial states are obtained by sampling from 
the prior (i.e. the lower bound on the likelihood is zero); the asso-
ciated mass is X(0) = 1.

Rather than increasingly giving the data more and more weight 
as is done in thermal approaches, nested sampling focuses on 
states with high posterior probability by constructing a sequence 
of nested priors restricted to higher and higher likelihood regions. 
Thereby nested sampling locates the relevant states that contribute 
strongly to the evidence integral and simultaneously constructs an 
optimal sequence of likelihood contours. In path sampling, the geo-
metric path must be typically chosen by the user; nested sampling 
elegantly circumvents this problem.

Another advantage of nested sampling is that each likelihood 
bound in the nested sequence compresses the prior volume by 
approximately the same factor, which allows nested sampling to 
handle first order phase transitions. In contrast, tempering meth-
ods such as simulated annealing and parallel tempering compress 
based on steps in temperature (∝ L1/T ), and as a result they typi-
cally fail at phase transitions (Fig. 1B).

Often a practical difficulty of applying nested sampling is the 
requirement to sample from the prior subject to a hard constraint 
on the likelihood. Mukherjee et al. [107] developed a version of 
nested sampling that fits an enlarged ellipse around the walkers 
and samples uniformly from that ellipse until a sample is drawn 
that has a likelihood exceeding the old minimum. Sampling within 
the hard constraint is also made difficult when the distribution 
is multi-modal. MultiNest [108,109,30] was developed to handle 
multi-modal distributions by using K-means clustering to cluster 
the walkers into a set of ellipsoids. At each iteration, MultiNest 
replaces the walker with the worst likelihood by a new walker 
generated by randomly selecting an ellipsoid (uniformly) and sam-
pling uniformly from within the bounds of that ellipsoid. These 
ellipsoids serve to allow one to detect and characterize multiple 
peaks in the distribution. However, the method has two drawbacks 
in which accurate K-means clustering limits the dimensionality 
of the problem to tens of parameters, and the elliptical regions 
may not always cover the high likelihood regions of the parameter 
space.

Other variants of nested sampling couple the technique with 
Hamilton Monte Carlo [110] or Galilean Monte Carlo [111,112,20], 
which sample within the hard likelihood constraint by considering 
the step size to be determined by some particle dynamics depend-
ing on the particle velocity, and using that velocity and likelihood 
gradient to reflect off of the hard likelihood boundary. This has 
been demonstrated to result in improved exploration in cases of 
multi-modal distributions and distributions with curved degenera-
cies.

Another possible way to facilitate sampling from within the 
hard likelihood constraint is to introduce additional “demon” vari-
ables that smooth the constraint boundary and push the walkers 
away from it [113]. This approach can help to solve complex in-
ference problems as they arise, for example, in protein structure 
determination, at the expense of introducing additional algorith-
mic parameters.

Diffusive Nested Sampling [114] is a variant of nested sampling 
that monitors the log likelihood values during the MCMC steps and 
creates nested levels such that each level covers approximately e−1

of the prior mass of the previous level. This allows the relative 
enclosed prior mass of the nested levels to be estimated more ac-
curately than in nested sampling. Samples are then obtained from 
a weighted mixture of the current level and the previous levels so 
that a mixture of levels is diffusively explored facilitating travel be-
tween isolated modes and allowing a more refined estimate of the 
log evidence.

5. Practical examples

In this section we consider a set of four practical examples 
where the Bayesian evidence is both calculated and used in differ-
ent ways. The purpose of this section is not to compare one com-
putational method against another, since given the large number 
of techniques available, this would require a more extensive treat-
ment. Instead, the goal is to demonstrate the utility of Bayesian 
model selection in several examples both relevant to signal pro-
cessing and spanning the domain sciences.

The first example focuses on the problem of signal detection 
where the evidence, which is computed analytically, is used to test 
between two models: signal present and signal absent. The sec-
ond example focuses on using the evidence, estimated numerically 
by nested sampling, to select the model order of a Gaussian mix-
ture model of the spatial sensitivity function of a light sensor. The 
third example relies on the application of the evidence, estimated 
using MultiNest, to select among a set of exoplanet models each 
exhibiting different combinations of photometric effects. The final 
example selects a molecular mechanics force field approximately 
describing atomic interactions in proteins by computing the evi-
dence of nuclear magnetic resonance (NMR) data.

5.1. Signal detection

In this example, based on the work by Mubeen and Knuth 
[115], we consider a practical signal detection problem where the 
log odds-ratio can be analytically derived. The result is a novel 
signal detection filter that outperforms correlation-based detection 
methods in the case where both the noise variance and the vari-
ance in the overall signal amplitude is known. While this detection 
filter was originally designed to be used in brain-computer inter-
face (BCI) applications, it is applicable to signal detection in general 
(with slight modification).

We consider the problem of detecting a stereotypic signal, s(t), 
which is modeled by a time-series with T time points. This signal 
has the potential to be recorded from M detector channels with 
various (potentially negative) coupling weights Cm where the in-
dex m refers to the mth channel. Last, and perhaps more specific 
to the BCI problem, we consider that the overall amplitude of the 
emitted signal waveshape s(t) can vary. This is modeled using a 
positive-valued amplitude parameter α, which is the only free pa-
rameter as it is assumed that the coupling weights Cm and the 
signal waveshape s(t) are known.

There are two states to be considered: signal absent (null hy-
pothesis) and signal present. We model the signal absent state as 
noise only

MN : xm(t) = nm(t) (74)

where MN denotes the “noise-only” model, xm(t) denotes the sig-
nal time-series recorded in the mth channel and nm(t) refers to the 
noise signal associated with the mth channel. The signal present 
state is modeled as signal plus noise by

M S+N : xm(t) = αCms(t) + nm(t) (75)

where the symbol M S+N denotes the “signal-plus-noise” model 
and α is the amplitude of the signal s(t), which is coupled to each 
of the m detectors with weights Cm .

The odds-ratio can be written as the ratio of evidences

OR = P (X |M S+N , I) ≡ Z S+N (76)

P (X |MN , I) Z N
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where X represents the available data, which here will be the 
recorded time series vector x(t) = {x1(t), x2(t), . . . , xM(t)}, and I
represents any relevant prior information including the coupling 
weights Cm and the signal waveshape s(t). The two evidence val-
ues can be written as

Z N = P (X |MN , I) (77)

= P (x(t)|n(t), I) (78)

and

Z S+N = P (X |M S+N , I) (79)

=
αmax∫

αmin

dα P (α|I)P (x(t)|n(t), I) (80)

where the latter is marginalized over the amplitude range [αmin,

αmax] of the signal α since we only care to detect the signal. Here 
P (α|I) represents the prior probability for the amplitude parame-
ter α. Note also that x(t) and n(t) without subscripts refer to the 
vector of time series over each of the detector channels.

Assuming that the noise signals n(t) have identical characteris-
tics in each channel, we assign a Gaussian likelihood with a stan-
dard deviation of σn to both models. Note that this is not quite 
the same as assuming that the signals are Gaussian distributed, 
but rather this is the maximum entropy assignment where both 
the mean and squared deviation from the mean are known to be 
relevant quantities. For the “noise-only” model there are no model 
parameters and the likelihood is equal to the evidence (78)

Z N = (2πσn
2)−MT/2 exp

[
− 1

2σn
2

M∑
m=1

T∑
t=1

xm
2(t)

]
. (81)

In the “signal-plus-noise” model we have the Gaussian likelihood

P (x(t)|α,n(t), I)

= (2πσn
2)−MT/2 exp

[
− 1

2σn
2

M∑
m=1

T∑
t=1

(xm(t) − αCms(t))2

]
.

(82)

By assigning a (potentially-truncated) Gaussian prior to the ampli-
tude parameter α,

P (α|I) = 1

Zα
exp

[
− 1

2σα
2
(α − α̂)2

]
, (83)

with a normalization constant Zα given by

Zα =
αmax∫

αmin

dα exp

[
− 1

2σ 2
α

(α − α̂)2
]

, (84)

one can integrate the likelihood (82) to find the evidence of the 
“signal-plus-noise” model (80).

By defining

D = S2 +
M∑

m=1

T∑
t=1

Cm
2s2(t) (85)

E = S2α̂ +
M∑

m=1

T∑
t=1

Cmxm(t)s(t) (86)

F = S2α̂2 +
M∑ T∑

xm
2(t), (87)
m=1 t=1
where

S2 = σn
2

σα
2
, (88)

we can complete the square in the exponent and write the odds 
ratio as

Z S+N

Z N
=
∫ αmax
αmin

dα P (α|I)P (x(t)|n(t), I)

Z N
(89)

= exp

[
− 1

2σ 2
n

(S2α̂2 − E2/D)

]
Zd

Zα
(90)

where

Zd =
αmax∫

αmin

dα exp

[
− D

2σ 2
n

(α − E/D)2
]

. (91)

In general, these Gaussian integrals result in solutions involving 
the error function (erf) [116]

b∫
a

dx e
− 1

2σ2 (x−μ)2 =
√

2πσ 2

2

[
erf

(
b − μ√

2σ

)
+ erf

(
μ − a√

2σ

)]
.

(92)

If we restrict the signal amplitude to being positive, we have that 
αmin = 0 and αmax = +∞ and the integrals (91) and (84) become

Zd =
√

2πσ 2
n /D

2

[
1 + erf

(
E√

2D σn

)]
(93)

and

Zα =
√

2πσ 2
α

2

[
1 + erf

(
α̂√
2σα

)]
(94)

resulting in the log odds ratio

log OR+ = 1

2

[(
E2

Dσ 2
n

− α̂2

σ 2
α

)
+ log

(
S2

D

)]

+ log

⎛
⎜⎜⎝

1 + erf

(
E√

2D σn

)

1 + erf

(
α̂√
2 σα

)
⎞
⎟⎟⎠ , (95)

where the subscript + indicates that the signal amplitude α is as-
sumed to be positive.

However, if we consider allowing α to vary over the entire real 
line by setting αmin = −∞ and αmax = +∞ we find that

Zd =
√

2πσ 2
n /D (96)

and

Zα =
√

2πσ 2
α, (97)

which gives a simpler log odds ratio which lacks the term with the 
erf functions

log OR± = 1

2

[(
E2

Dσ 2
n

− α̂2

σ 2
α

)
+ log

(
S2

D

)]
, (98)

where the subscript ± indicates that the signal amplitude α ranges 
from −∞ to ∞.

The expression E (86) contains the cross-correlation term, 
which is what is typically used for the detection of a target sig-
nal in ongoing recordings. The log OR detection filters incorporate 
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Fig. 2. A: The P300 template target signal. B: An example of three channels (Cz, Pz, Fz) of synthetic ongoing EEG with two P300 target signal events (indicated by the arrows) 
at an SNR of 5 dB.

Fig. 3. A: This illustrates the ROC curves for both the Correlation Detection Method and the log OR+ Detection Method in the case of SNR = 5 dB. Note that the log OR+
Detection has a greater area under the curve (0.5996 as opposed to 0.5162 for Correlation), which indicates better performance over the Correlation Method. B: This figure 
illustrates the ROC curves for both the Correlation Detection Method and the logOR± Detection Method in the case of SNR = 5 dB. While the log OR± Detection performs 
better than Correlation (0.5912 as opposed to 0.5162 for Correlation), it does not do quite as well as logOR+ Detection in the case of SNR = 5 dB.
more information that leads to extra terms, which serve to aid in 
target signal detection.

Since the “signal-plus-noise” model (75) reduces to the “noise-
only” model (74) as α → 0, one would expect that the odds ratio 
should go to one, OR → 1, as α → 0. This can be accomplished 
by setting α̂ = 0 and letting σα → 0 in which case the truncated 
Gaussian prior for α (83) collapses to a delta function. The odds 
ratio in (90) shows this limiting behavior as the argument of the 
exponential function approaches zero, and Zd/Zα → 1. Another 
way to ignore the signal is to set Cm = 0, in which case D = S2, 
E = S2α̂. Again the argument of the exponential function in (90)
vanishes and ratio of the normalizing constants approaches one.

To analyze the performance of the log OR filters, we generated 
synthetic electroencephalographic (EEG) data representing both the 
EEG background and the P300 evoked response, which is a brain 
response commonly used in BCI applications [117] (Fig. 2A). Using 
the MATLAB code provided by Yeung, Bogacz, et al. [118], three 
channels of synthetic EEG data were generated to simulate record-
ings from scalp locations: Cz, Pz and Fz. A current dipole model 
was used to scale the synthetic recordings from the different chan-
nels [119]. The data from each of these channels consisted of 300 
epochs each being 800 ms in length and comprised of 200 sam-
ples, which is consistent with a sampling rate of 250 Hz. Thirty 
epochs were selected to each host a single stereotypic P300 re-
sponse at random latencies. The remaining 270 epochs exhibited 
only ongoing background EEG (noise).

To study the effect of the Signal-to-Noise-Ratio (SNR) on the 
log OR filter performance, we created 17 data sets where the SNR, 
calculated by the formula

SNRdB = 10 log10

(
Asignal

Anoise

)2

, (99)

was varied in integral steps from −6 dB to 7 dB as well as 10, 
15 and 20 dB covering the typical SNR range seen in BCI and EEG 
applications. Fig. 2B illustrates synthetic ongoing EEG recordings 
with two target P300 signals (Fig. 2A) at an SNR of 5 dB.

The selection of a detection threshold value is a difficult task. As 
the detection threshold increases, the sensitivity decreases while 
the specificity increases, which means that the false positive frac-
tion (1-specificity) decreases. To study the performance of the 
log OR detection filter we compared it to the standard Correla-
tion Method by producing Receiver Operating Characteristics (ROC) 
curves. To do this we calculate sensitivity and (1-specificity) for 
each distinct value of the detection measure (i.e. log OR/Correla-
tion) to consider it as a candidate for detection cutoff. By plot-
ting (1-specificity) versus sensitivity, the efficacy of the detection 
method can be quantified by the area under the ROC curve [120]. 
Fig. 3 compares the ROC curves of the Correlation Method with 
the log OR+ Method (Fig. 3A) and the log OR± Method (Fig. 3B) ob-
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Fig. 4. A comparison of the performance of the two log OR methods, log OR+ and 
log OR± , and the Correlation Method as quantified by the areas under their respec-
tive ROC curves as a function of SNR. The log OR+ filter consistently performs better 
for low SNR, but is outperformed by log OR± Detection for SNR > 5 dB.

tained for target signals with an SNR of 5 dB. These figures indicate 
that at this particular SNR, the log OR Detection filters outperform 
the traditional Correlation Method. Fig. 4 provides a comparison of 
the performance of the two log OR methods, log OR+ and log OR± , 
and the Correlation Method as quantified by the areas under their 
respective ROC curves as a function of SNR for SNRs ranging from 
−6 dB to 20 dB. The results indicate that the log OR detection fil-
ters based on Bayesian model testing consistently outperformed 
traditional Correlation. Moreover, we see that the log OR+ filter 
consistently performs better for low SNR, but is outperformed by 
log OR± Detection for SNR > 5 dB.

5.2. Light sensor characterization

In this example, based on the work by Malakar, Gladkov and 
Knuth [121], we demonstrate the use of Bayesian evidence to se-
lect the model order for a Gaussian mixture model of a light 
sensor, which was used in a robotics application [121]. The prob-
lem involved identifying an accurate and efficient model of a LEGO 
light sensor (LEGO #9844). The sensor consists of a photodiode-
LED pair where the LED is used to illuminate the surface and the 
photodiode is used to measure the intensity of the reflected light. 
The sensor integrates the light arriving from a spatially distributed 
region within its field of view, weighted by its spatial sensitivity 
function (SSF). The goal was to model the SSF so that we could 
make accurate predictions of how the light sensor would respond 
when placed above a surface with a known albedo pattern. We 
considered a mixture of Gaussians (MoG) model for the SSF in the 
sensor frame (x′, y′) = (x − xi, y − yi),

SSF(x′, y′) = 1

K

N∑
n=1

an exp
[{An(x′ − u′

n)
2 + Bn(y′ − v ′

n)
2

+ 2Cn(x′ − u′
n)(y′ − v ′

n)}
]

(100)

where an and (u′
n, v ′

n) denote the amplitude and center of the nth
Gaussian, respectively, where its covariance matrix elements are 
denoted by An , Bn and Cn . The factor K is the normalizing con-
stant to ensure that the SSF integrates to unity in the case of a 
white surface.

The MoG model is sufficiently general to be able to well-
describe the SSF by varying the number of Gaussians. We consid-
ered four models consisting of one, two, three and four Gaussians. 
Each Gaussian in the mixture requires six parameters to be es-
Fig. 5. A: An illustration of the black-and-white calibration surface. B: An illustration 
of the four orientations of the light sensor along with the colored symbols used to 
represent the intensities in Fig. 7 recorded at each orientation with respect to the 
calibration surface as indicated by the black arrows.

timated θn = an, un, vn, An, Bn, Cn , where the subscript n indexes 
the Gaussian in the mixture.

In order to infer the model, we collected data by performing 
a series of experiments by recording intensities as the sensor was 
moved along a known surface (Fig. 5A). The sensor was held at 
a height of 14 mm above the surface in one of four orientations 
illustrated in Fig. 5B. Intensities were recorded at increments of 
1 mm steps as the sensor was moved in the direction of the arrow. 
In addition to the surface illustrated in Fig. 5A, we also presented 
the sensor with four corner patterns designed to break remaining 
symmetries.

Bayesian estimation of the MoG model parameters was per-
formed using nested sampling with 300 samples, and was repeated 
20 times for each model order to obtain uncertainty estimates of 
the log-evidence. We assigned uniform priors to the model pa-
rameters as well as a Student-t distribution to the likelihood. The 
nested sampling algorithm was iterated while monitoring the log-
evidence, and was stopped when the change in the consecutive 
log-evidence values was less than 1e–8.

Fig. 6 shows the four resulting MoG models of the SSF func-
tion. Table 1 shows the evidence values for the competing models. 
The 1-MoG model consisting of a single Gaussian had the great-
est mean log-evidence of −665.1, which is why it was selected as 
the optimal model. Fig. 7 compares the predictions (black) made 
by the 1-MoG SSF model to the observed intensities (red) showing 
excellent agreement. The resulting SSF model obtained by maxi-
mizing the log-evidence was found to be both accurate and effi-
cient, and was selected for use in further studies involving that 
light sensor [121].

However, given the uncertainties of the log-evidence values of 
the models in Table 1, selection of a best model based on the log-
evidence alone is not clear. These results suggest that this imple-
mentation of nested sampling is experiencing difficulties dealing 
with the multiple optima resulting from the degeneracies of the 
mixture model. This is similar to the challenge faced by Chib using 
Gibbs sampling [65], as noted, and solved, by Berkhof et al. [66]. 
In the Conclusion, we will make some additional comments on se-
lecting an optimal model order based on log-evidence estimates.

5.3. Exoplanet detection

Our third example concerns the determination of the impor-
tance of various photometric effects in an exoplanetary system. 
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Fig. 6. An illustration of the four resulting MoG SSF Models along with their log-evidence values. The single Gaussian model (1-MoG) was found to have the greatest evidence, 
and therefore was selected as the optimal model of the light sensor SSF function.
Table 1
This table lists the log-evidence (log Z ) values estimated for the MoG SSF mod-
els of various model orders. The simplest model consisting of a single Gaussian 
(1-MoG) was found to be the most probable model. However, the increasing un-
certainty in the log-evidence estimates strongly suggests that this implementation 
of nested sampling is experiencing difficulties in handling the degeneracies in the 
mixture model.

MoG model log Z # of params

1 Gaussian −665.1 ± 2.4 6
2 Gaussians −669 ± 12 12
3 Gaussians −701 ± 87 18
4 Gaussians −746 ± 94 24

The details of this study by Placek, Knuth, et al. can be found in 
the following references [122,123]. Currently, the primary method 
of detecting and characterizing exoplanets involves the analysis 
of the time series resulting from the observations of unresolved 
light coming from a planetary system. The presence of exoplan-
ets around distant stars is known to produce at least four physical 
mechanisms that affect the observed photometric signal in very 
specific ways. The first two effects originate from the planet it-
self. As the planet orbits it’s host star, it undergoes phases just as 
Venus and Mercury do in this Solar System from the perspective of 
Earth. This will cause photometric variations since the amount of 
reflected light off of the atmosphere or surface of the planet will 
change throughout the planet’s orbit. By modeling the reflectance 
as Lambertian, one can model these stellar-normalized flux varia-
tions as

F R(t)

F


= Ag

2

R p
2

r(t)2 (1 + cos θ(t)) , (101)

where Ag is the geometric albedo of the planet, which represents 
how effective the planet is at reflecting incident light back into 
space, R p is the planetary radius, r(t) is the planet-star separation 
distance, θ(t) is the angle between the observer’s line-of-sight and 
the line connecting the star to the planet, and F
 is the stellar flux. 
Similarly, planets have a temperature and therefore emit thermal 
radiation. This also contributes to the observed photometric signal 
and can be modeled for both day and night sides as
Fig. 7. The 1-MoG SSF model, with the maximum log-evidence, is used to predict 
the sensor intensity (solid curves) when applied to the black-and-white calibration 
surface and compare it with the recorded intensities (discrete symbols). The four 
symbols denote the four orientations of the sensor as indicated in Fig. 5. Note that 
since the 1-MoG SSF model is aligned with the measurement axes, the predicted 
curves for the 0◦ orientation (red triangles) and 180◦ orientation (blue diamonds) 
are identical and overlaid on top of one another in the center of the figure.

F T ,d(t)

F


= 1

2
(1 + cos θ(t))

(
R p

R


)2 ∫ B(Td)K (λ)dλ∫
B(Teff )K (λ)dλ

(102)

where R
 and Teff are the stellar radius and effective tempera-
ture, respectively, B(T ) is the spectral radiance of a blackbody, 
T (d) is the day-time temperature of the planet, and K (λ) is the 
instrument response as a function of wavelength λ. The expected 
stellar-normalized flux from the night-side F T ,n(t)

F

is found using 

the night-side temperature of the planet Tn .
The remaining two effects are induced by the planet but involve 

the host star. Stars and planets both orbit the center of mass of the 
system. As the star revolves around the center of mass, an observer 
moving relative to that star will observe increases in the amount 
of flux emitted from the star as it approaches, and a decrease in 
flux as it recedes. This is known as Doppler beaming and is a rel-



62 K.H. Knuth et al. / Digital Signal Processing 47 (2015) 50–67
ativistic effect. In the non-relativistic limit, the flux variations can 
be approximated as

F B(t)

F


= 1 + 4βr(t) (103)

where βr(t) is the component of stellar velocity along the line-
of-sight. This effect has the same frequency as the previous two, 
however the signal is shifted in phase by π/2. Finally, due to the 
proximity of the planet to the star, the planet will induce tides on 
the stellar surface causing the star to appear as a prolate spheroid. 
These tides will follow the planet in its orbit and result in flux 
variations at twice the orbital frequency since the cross-section of 
the star is changing throughout the orbit. This effect is approxi-
mated by

Fellip(t)

F


= β
Mp

M


(
R


r(t)

)3

× [cos2(ω + ν(t)) + sin2(ω + ν(t)) cos2 i] (104)

where β is the gravity darkening exponent, Mp and M
 are the 
planetary and stellar masses, respectively, ω is the argument of 
periastron, ν(t) is the true anomaly, and i is the orbital inclination.

In order to obtain a predictive model for the total observed sig-
nal, one needs to sum the photometric contributions from each 
effect

Fpred(t) = F


(
1 + F p(t)

F


+ Fboost(t)

F


+ Fellip(t)

F


+ FTh,d(t)

F


+ FTh,n(t)

F


)
. (105)

Bayesian model selection allows one to effectively characterize 
exoplanetary systems. Each of these four effects can be present in 
the data to varying degrees, or completely absent. Thus, one can 
create a suite of models each comprised of a different subset of 
the four photometric effects. Since all four effects depend on the 
orbital orientation of the planet, model testing also allows one to 
test between circular and eccentric orbits. By calculating the evi-
dence for each model, one could determine whether or not each 
effect is present in the data, and how large of a role each effect 
plays in describing the observed data.

As an example, we performed such model testing on data ob-
tained from the Kepler Space Telescope for a confirmed exoplanet 
called KOI-13b. KOI-13b is known as a short-period hot Jupiter 
since it orbits its host star in just 1.7637 days and has a tem-
perature of over 3500 K. This sort of exoplanet is expected to 
induce large ellipsoidal variations on its host star, produce signif-
icant thermal emission and less reflection. This is due to the fact 
that most of the reflective condensates in the atmosphere, such as 
water and ammonium, are essentially burned off, significantly de-
creasing the planetary albedo. A set of 18 models were applied to 
KOI-13b (shown in Table 2) and log-evidences were calculated for 
each one using the MultiNest algorithm [108,109,30], which is one 
of several inference engines included in our EXONEST Exoplanetary 
Explorer software suite [123].

In general, the noise is expected to be Gaussian-distributed 
about the mean exoplanetary signal. Therefore, a Gaussian log-
likelihood of the form

log L = −1

2
χ2 − 1

2
N log(2πσ 2) (106)

was used in each of the 18 simulations, where σ 2 is the noise 
variance, N is the number of datapoints, and χ2 is the sum of the 
squared residuals divided by σ 2. The noise variance was treated as 
a free parameter to be estimated by MultiNest. Often, stars display 
short-period variability induced by oscillations, starpots, and other 
Table 2
MultiNest log-evidences for 18 different models applied to the photometric signal 
of KOI-13b. Each model is named after the effects that it takes into account (Reflec-
tion – R, Doppler Beaming – B, Ellipsoidal Variations – E, Thermal Emissions – T). 
The models most favored to describe the data are in bold. Note that with the re-
flectance and thermal emissions models used in this study, reflected light intensity 
and thermal emissions cannot be distinguished in a circular orbit. For this reason, 
that specific case was not analyzed. The χ2 values for the best fit eccentric mod-
els and the number of parameters for each are also listed. The two most probable 
models correspond to the best fit models according to the χ2 criterion. The Null 
Planet model consisted of two model parameters: the noise level σ ∈ [10−6, 10−4]
and the baseline flux ∈ [−0.1, 0.1]. Last, note that the log-evidence values presented 
are positive due to the fact that the noise variance σ 2 is very small for this data 
with σ values being as low as 10−6. This results in a large positive value for the 
second term of the log likelihood (106), which dominates the evidence integral.

Model Circular Eccentric χ2

(ppm)
Model 
parameters

R 37 108.0 ± 0.4 37 659.0 ± 5.4 2023 7
B 36 970.0 ± 4.0 37 166.0 ± 1.9 2539 7
E 36 555.0 ± 0.5 37 581.0 ± 0.4 3627 7
R + B 37 108.0 ± 0.5 37 670.0 ± 2.9 2018 8
R + E 37 701.0 ± 0.5 37 704.0 ± 2.7 2010 8
B + E 36 577.0 ± 0.8 37 634.0 ± 2.8 3534 7
R + B + E 37 703.0 ± 1.1 37 748.0 ± 1.1 1862 8
T + B + E 37 703.0 ± 1.1 37 764.0 ± 8.3 1817 9
R + B + E + T . . . 37 765.0 ± 0.9 1818 10

Null 36 143.0 ± 1.0 2

effects. This variability can lead to correlated (red) noise, which 
can deviate from a Gaussian distribution. In that case, one may 
adopt a more detailed likelihood function that utilizes a nearest-
neighbor approach to deal with noise correlations in the time se-
ries signal [17].

Each model was applied twice for circular and eccentric orbits. 
The simpler models are shown at the top of Table 2 and they in-
crease in complexity moving down the table. The two models most 
favored to describe the data are those including thermal emission, 
Doppler boosting, and ellipsoidal variations (log Z = 37 764 ± 8.3), 
and reflection, thermal emission, Doppler boosting, and ellipsoidal 
variations (log Z = 37 765.0 ± 0.9), which is illustrated in Fig. 8. 
Based on the uncertainties on the log-evidences, these two models 
have an essentially equal probability to describe the observed data. 
This also means that adding the reflection effect to thermal emis-
sions does not yield a significantly better fit as indicated by the 
χ2 values, which indicate a difference in the sum of the squared 
residuals of only 0.12%. This is to be expected for planets similar 
to KOI-13b since they have very low albedos and are very hot due 
to the proximity to the host star. In each case, the eccentric model 
is more favored than the circular.

The astute reader will note that the log-evidence values in Ta-
ble 2 are positive, which indicates that there are large positive log 
likelihood values in the integral. Since the likelihood, and hence 
the evidence, are density functions and have units, this is a re-
sult of the choice of units for flux. The log likelihood (106) is the 
sum of two terms. The first term is unit-less, whereas the second 
term depends on log(σ ), which can change signs depending on the 
units.5 As a check, these can be estimated by considering the Null 
Planet model with zero baseline and a noise level of σ = 5 × 10−5. 
In this case, one can use the fact that there are N = 4187 flux 
data points with a standard deviation of 4.3050 × 10−5 resulting 
in χ2 = 3104 and a log likelihood (106) of 36 066 for those par-
ticular model parameter values. Since this is the logarithm of the 
likelihood, large positive values like this dominate the evidence in-
tegral resulting in a log-evidence of log Z = 36 143.0 ± 1.0 for the 
Null Planet model. Since there is a planet present, this represents 

5 See http :/ /blog .stata .com /2011 /02 /16 /positive-log-likelihood-values-happen/ for 
more information on this effect.

http://blog.stata.com/2011/02/16/positive-log-likelihood-values-happen/
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Fig. 8. A: A model fit (solid curve) to exoplanet KOI-13b data (asterisks) from the Kepler Space Telescope. The secondary eclipse from the planet passing behind the star is 
centered in the plot between the phases 0.4 and 0.5. The primary transit from the planet passing in front of the star occurs at the far right between phases 0.9 and 1.0. The 
inset at the bottom shows the estimated photometric flux contributions from reflected light, ellipsoidal variations, Doppler boosting and thermal emissions. B: A detailed 
illustration of the model fit to the primary transit.
a lower bound to the positive log-evidence values obtained in Ta-
ble 2.

By comparing the results from multiple models some important 
facts about the KOI-13b are revealed. First, both the χ2 values and 
the log-evidences indicate that reflected light (or thermal emis-
sions, which are similar to reflected light) is a prominent com-
ponent in the photometric signature. One can also note that the 
R + E model, which describes reflection and ellipsoidal variations 
(log Z = 37 704 ± 2.7), is only marginally less probable than the 
models that include all three photometric effects. This further im-
plies that ellipsoidal variations also play a significant role in the 
observed data. This indicates an additional advantage to compar-
ing and contrasting sets of models based on the χ2 values and 
the log-evidences. By calculating the Bayesian evidence and incor-
porating model testing by turning on and off certain photometric 
effects, one can effectively characterize planetary systems, as well 
as use it as a planetary confirmation procedure.

5.4. Force field selection in biomolecular structure determination

Last, we present an example from Habeck in structural biol-
ogy [124]. NMR spectroscopy allows us to determine the three-
dimensional structure of complex biomolecules such as proteins 
at atomic resolution. However, often the data are not sufficient to 
determine the structure without additional guidance from molecu-
lar mechanics force fields. These force fields can be very complex, 
which slows done the structure calculation. Therefore, the force 
fields used in biomolecular structure determination typically ne-
glect important contributions such as electrostatic or solvent in-
teractions and rather work with a minimalist force field. On the 
other hand it is clear that by choosing more realistic force fields 
the results obtained from challenging data will be more useful.

Current practice to calculate biomolecular structures is to set up 
a cost function (the so-called hybrid energy) λD(x, d) + E(x) that 
is comprised of a data fitting term D(x, d) weighted by λ and a 
force field E(x) where x are the conformational degrees of freedom 
of the biomolecule (e.g. the Cartesian coordinates of all atoms or 
dihedral angles) and d represents relevant data. Inferential struc-
ture determination (ISD) [125] is a strictly probabilistic approach 
to solve structure determination problems. It not only allows us 
to estimate the appropriate weight of the data λ [126], but also 
to compare two alternative force fields in the light of given ex-
perimental data [124] as well as determine the best weight of the 
force field [127]. ISD models the data d probabilistically such that

P (d|x, M, I) = 1

Z D(λ,d)
e−λD(x,d) (107)

where Z D(λ, d) is a normalizing constant that depends on the cho-
sen model M to assess discrepancies between observed data d and 
predictions made by the forward model. The force field E(x) is in-
corporated using a Boltzmann distribution as prior probability over 
the conformational degrees of freedom:

P (x|M, I) = 1

Z E(β)
e−βE(x) (108)

where Z E (β) is the partition function of the Boltzmann distribu-
tion and normalizes the prior. In the most general case the inverse 
temperature β of the force field is unknown because, as explained 
above, we cannot afford to work with realistic force fields but have 
to make drastic simplifications. Therefore also the “temperature” of 
the minimalist force field is no longer identical to the temperature 
at which the experiments were carried out, but is instead an un-
known hyperparameter [127].

Here, we compare two different force fields that are used in 
biomolecular modeling. Both aim to describe van der Waals inter-
actions between atoms that are not linked via a covalent bond. The 
first is a quartic repulsion term that drops to zero when the dis-
tance between two atoms ri j is larger than the sum of their van 
der Waals radii Ri [128]:

Equartic(ri j) =
{

(ri j − Ri − R j)
4; ri j ≤ Ri + R j

0; ri j > Ri + R j
(109)

This force field ignores the attractive contribution of the van der 
Waals interaction. An alternative force field that takes the attrac-
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Fig. 9. Comparison of force fields in biomolecular structure determination. A: Average goodness of fit 〈D〉λ,q in the 50 replicas at varying λ and q used to sample the posterior. 
B: Average log likelihood 〈log L〉λ obtained with the estimated DOS. C: Accuracy as measured by the root mean square deviation (RMSD) of the structures sampled from the 
posterior with the crystal structure.
tive term into account is used in the Rosetta software [129]. This 
is a Lennard–Jones potential that is linearly ramped to finite val-
ues as ri j approaches zero and vanishes for distances larger than a 
cutoff distance of Rcut = 5.5 Å. The potential function is:

ELJ(ri j) =
(

Ri + R j

ri j

)12

− 2

(
Ri + R j

ri j

)6

(110)

for 0.6(Ri + R j) < ri j ≤ 5 Å and continues linearly to the left and 
right of this interval.

We compare these two force fields in the light of NMR data 
measured on the Fyn-SH3 domain, a small signaling domain of 
59 amino acids in length. The data are sparse and comprised of 
154 inter-proton distances measured on a deuterated sample [125]. 
We ran a parallel tempering simulation for each of the two force 
fields. The parallel tempering schedule is two-dimensional [130]: 
The first replica parameter λ is the inverse temperature and gradu-
ally switches off the data, whereas the second parameter is Tsallis’ 
q used to deviate from the Boltzmann ensemble (108). The Tsal-
lis ensemble approaches the Boltzmann ensemble for q → 1 and is 
used here only for convenience because neighboring replicas will 
show a higher overlap due to the fatter tails of the Tsallis ensem-
ble. Fifty replicas were set up in which λ varied from 0.1 to 1.0 
and q varied from 1.06 to 1.0; we used the same combination of 
(λ, q) values for both force fields.

Fig. 9A shows the average goodness of fit 〈D〉λ,q (negative log 
likelihood) for each of the 50 replicas. It is already apparent from 
this figure that the Lennard–Jones potential (110) results in a bet-
ter goodness of fit than the purely repulsive potential [Eq. (109)]. 
We applied histogram re-weighting to estimate the density of 
states (DOS) from the replica simulations [82,89]. The estimated 
DOS can be used to calculate the expected log-likelihood as a 
function of the inverse temperature 〈log L〉λ and apply thermo-
dynamic integration, which would not be possible without the 
help of the DOS because (λ, q) are varied simultaneously. Fig. 9B 
shows the expected log likelihood 〈log L〉λ as a function of the in-
verse temperature, i.e. the integrand of thermodynamic integration 
equation (49). Alternatively, we can evaluate the partition func-
tion (41) to compute the evidence. Both approaches are equivalent 
and give the same result. The evidence clearly favors the Lennard–
Jones potential (log Z = −69) over the potential based on a quar-
tic repulsion term (log Z = −166). The Lennard–Jones potential is 
not only more supported by the NMR data but also results in a 
more accurate structure ensemble. The root mean square deviation 
(RMSD) between members of the posterior ensemble and the crys-
tal structure, serving here as a reference, is systematically shifted 
towards better values when using the Lennard–Jones potential (see 
Fig. 9C).
6. Conclusion

In this paper we have reviewed the concept of the Bayesian ev-
idence (marginal likelihood) and the related concepts of Bayes fac-
tors and odds ratios, which quantify the probability of one model 
over another based on the selected models and the data. That is, 
the degree to which the data implies a given model. In addition 
to discussing the analytic treatment of the foundations, we have 
focused mainly on approximate and numerical techniques such as 
the Laplace approximation, variational Bayes, thermodynamic inte-
gration and stochastic integration via Monte Carlo methods.

The discussions regarding these methods were supplemented 
by four examples with the intention of demonstrating Bayesian 
model testing in different scientific domains: signal detection (BCI) 
[115], sensor characterization (robotics) [121], scientific model se-
lection (exoplanet characterization) [122,123] and molecular force 
characterization (structural biology) [124]. Together these applica-
tions demonstrate the power of Bayesian model testing in a vari-
ety of contexts leading to improved signal processing algorithms, 
improved instrument models, as well as a deeper understanding 
of physical systems at scales ranging from the astronomic to the 
microscopic. These examples, which involve detailed theoretical 
signal models, do not begin to cover the vast array of inference 
problems and underlying models that one could consider. For ex-
ample, nonparametric models find great use in domains where de-
tailed signal models are lacking. Examples of such models include 
Gaussian Processes [131,132,76,133] and generalized autoregres-
sive models [100,74]. As demonstrated in the provided references, 
Bayesian model testing works well with those nonparametric mod-
els as well.

In the examples given in this paper, model selection was based 
on the evidence or Bayes factors alone. However, it is important 
to remember that probability theory is not decision theory [57]. 
That is, there are other factors involved in any decision-making 
process that can be described by a utility function that maximizes 
expected utility or minimizes expected loss. For this reason, it is 
strongly recommended that model selection be performed by con-
sidering both the probability of a model and the expected utility 
function [134]. In practice, this can quite challenging as it is often 
difficult to identify and to quantify such utility especially in situ-
ations where there are multiple factors involved. This remains an 
active area of research.
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