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The last century saw the application of Boolean algebra to the construction of com-
puting machines, which work by applying logical transformations to information
contained in their memory. The development of information theory and the gen-
eralization of Boolean algebra to Bayesian inference have enabled these computing
machines, in the last quarter of the twentieth century, to be endowed with the abil-
ity to learn by making inferences from data. This revolution is just beginning as
new computational techniques continue to make difficult problems more accessible.
Recent advances in our understanding of the foundations of probability theory have
revealed implications for areas other than logic. Of relevance to intelligent machines,
we recently identified the algebra of questions as the free distributive algebra, which
will now allow us to work with questions in a way analogous to that which Boolean
algebra enables us to work with logical statements.

In this paper, we examine the foundations of inference and inquiry. We begin
with a history of inferential reasoning, highlighting key concepts that have led to
the automation of inference in modern machine-learning systems. We then discuss
the foundations of inference in more detail using a modern viewpoint that relies on
the mathematics of partially ordered sets and the scaffolding of lattice theory. This
new viewpoint allows us to develop the logic of inquiry and introduce a measure
describing the relevance of a proposed question to an unresolved issue. Last, we will
demonstrate the automation of inference, and discuss how this new logic of inquiry
will enable intelligent machines to ask questions. Automation of both inference and
inquiry promises to allow robots to perform science in the far reaches of our solar
system and in other star systems by enabling them not only to make inferences from
data, but also to decide which question to ask, which experiment to perform, or which
measurement to take given what they have learned and what they are designed to
understand.
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1. Introduction

James Bernoulli (1713) was among the first to realize the difference between deduc-
tive logic used in situations of certain knowledge and inductive logic, which is nec-
essary for the uncertain situations found in everyday problems. In Ars conjectandi
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(The art of conjecture), he was the first to quantify uncertainty by identifying a set
of equally possible hypotheses. This allowed him to calculate the number of ways in
which a given situation could occur relative to the total number of possible outcomes.
He also recognized that what we perceive as chance events could be interpreted as
regular predictable events if we were more knowledgeable: ‘[t]he chance depends
mainly upon our knowledge’. As we will see, this statement reflects what we consider
to be a modern view of probability as extended logic.

While Bernoulli became adept at enumerating possibilities and using them to cal-
culate probabilities, he was unable to use the outcomes to make inferences about the
way in which an observed situation could have occurred. Reverend Thomas Bayes
(1763) turned the situation around and made inferences about the causes using the
outcomes. While the rule still carries his name, it was Pierre-Simon Laplace who
independently rediscovered Bayes’ theorem (Laplace 1812), presented it in its mod-
ern form, and went on to use it to solve problems in astronomy, geodesy, instrumenta-
tion, error estimation, population, jurisprudence, and procedures of electoral bodies.
Laplace’s interpretation of Bayes’ theorem as an extension of logic led directly to
his extremely prolific application of the methodology, and can be summed up in a
translated quote from Théorie analytique des probabilités’? : ‘[p]robability theory is
nothing but common sense reduced to calculation’.

After Laplace, mathematicians of the nineteenth century worked to develop proba-
bility theory rigorously. As a general theory of inference, it was too difficult to derive
useful theorems. As a result, the range of applications of the theory was reduced
to relatively simple problems involving frequencies of event occurrences, which con-
sequently led to frequentist statistics—a field which continues to confuse students
with a bewildering array of statistical tests. It is quite amazing how the specificity
of modern frequentist methods stands in such stark contrast to the generality of this
theory at its conception. While others, most notably Jeffreys (1939), attempted to
resurrect the general theory of inference, the renaissance would have to wait until
some key insights were made in the middle of the twentieth century.

The information technology revolution in the last half of the twentieth century
was due in great part to Claude E. Shannon’s masterpiece ‘The mathematical theory
of communication’ (Shannon 1948a, b). In it he single-handedly developed what is
now called information theory, which has driven telecommunications, coding theory,
signal analysis, and computer science as a whole. Key to this development was the
concept of information-theoretic entropy. It was designed for use in communications,
and can be thought of as a measure of the degree of uncertainty of which message,
from a set of possible messages, will be received in a communication channel. The
name entropy, however, has created much confusion. Tribus & McIrvine (1971) recall
Shannon explaining how von Neumann suggested that he should call his measure
‘entropy’ because the same function was already employed in statistical mechanics,
and more importantly, that ‘nobody knows what entropy really is, so in a discussion
you will always have an advantage’. Much confusion ensued due to the fact that
Shannon’s application of information-theoretic entropy was so specific, yet it was so
similar to the poorly understood entropy in use for over 60 years in physics. The
great insights of the next character in our story clear up these mysteries.

While Shannon demonstrated how one could use the probabilities of a set of mes-
sages to compute the degree of uncertainty, Edwin Thompson Jaynes computed
probabilities based on a maximal degree of uncertainty. In this way he developed the
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principle of maximum entropy (Jaynes 1957, 1979), which allows one to assign prob-
abilities in the event that one possesses some knowledge in the form of constraints.
This allows entropy to be used as an inference tool. By maximizing the entropy sub-
ject to these constraints, one obtains a set of probabilities that are as non-committal
as possible while agreeing with what is known. Furthermore, Jaynes (1957) showed
that this is precisely the situation encountered in statistical mechanics, where the
solutions are those which maximize the entropy subject to constraints such as the
total energy of the system. Application to thermodynamics was further developed
and established by Myron Tribus (Tribus 1961; Tribus & McIrvine 1971). Thus not
only is the information-theoretic entropy related to the thermodynamic entropy, but
the laws of statistical mechanics were demonstrated to be processes of inferential
reasoning rather than physical laws descriptive of the system itself.

The last key insight on which we will expound in this paper was made by Richard
Threlkeld Cox, who saw that the sum and product rules of probability could be
derived from Boolean logic (Cox 1946, 1961). This was done by generalizing Boolean
implication among logical statements to degrees of implication represented by real
numbers. Cox’s insight was key as it provided the first rigorous proof of probability
theory as an extension of logic. Jaynes recognized this and became a strong proponent
of probability theory as extended logic and the basis for scientific reasoning, which
he advocated in his tome, Probability theory: the logic of science (Jaynes 2003). This
new perspective on information-theoretic entropy and probability theory implies that
the true information revolution (Solana-Ortega 2001) has only just begun.

While the necessary framework laid in the middle of the twentieth century led to
developments other than statistical physics, such as the Burg algorithm for spectral
analysis (Burg 1967), application of the Bayesian methodology to more general sci-
entific problems had to wait until the availability of sufficient computing power in
the late 1970s and early 1980s. It was not until this time that the methodology could
truly prove its worth by outperforming standard techniques in many areas of research.
Furthermore, inspired by Cox’s success in deriving the sum and product rules of
probability from Boolean logic, much effort has gone into better understanding the
foundations of probability theory and its relationship to another uncertainty-based
area of physics—quantum mechanics. The following sections will introduce a modern
picture of this foundation based on the mathematical concepts of partially ordered
sets and lattices. We will then demonstrate how the properties of the Boolean lattice
of logical statements lead to the sum and product rules of probability as derived by
Cox, and we will discuss a current application of this methodology to automating
inference in a machine-learning system. Last, we will use lattice theory to describe
the newly discovered algebra of questions, and discuss the possibilities that this new
methodology affords.

2. Posets and lattices

In this section we review the ideas behind partially ordered sets and lattices. This
modern viewpoint (Davey & Priestley 2002) will allow us to relate the study of
inference to the study of inquiry. The key concept required for this development
is that we can take a set of objects and an appropriate ordering relation, and
partially order the objects in the set, forming what is called a partially ordered
set or poset. We call this a partial ordering, because it may be that some of the
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Figure 1. Diagrams of lattices described in the text. (a) Natural numbers 1, 2, 3, 4 ordered
by ‘less than or equal to’. (b) All subsets of {a, b, c} ordered by ‘is a subset of’. (c) Logical
statements ordered by implication.

objects in the set are incomparable—like apples and oranges. As an example, con-
sider the powerset of {a, b, c}, which is the set of all possible subsets, written as
℘({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. We can order this set
nicely with the ordering relation ‘is a subset of ’, written for example as {a} ⊆ {a, b}.
This is a partial ordering as some elements, such as {a} and {b, c}, are incomparable
as neither one is a subset of the other.

An important insight here is that for any given set of objects, there may be different
ordering relations that can be used giving rise to different posets. To express an
ordering relation, we use the symbol ‘�’ so that a � b is read as ‘b includes a’. In
our powerset example, ‘�’ represents ‘⊆’. In the event that a � b and a �= b, we
write a < b and read ‘a is properly contained in b’. Last, we can think of this partial
ordering as imposing a hierarchy on the set of elements. When a < b, but there is
no element x such that a < x < b, then we can write a ≺ b, which is read as ‘b
covers a’. In this case b is an immediate superior to a in the hierarchy generated by
the ordering relation. Another example is the set of numbers {1, 2, 3, 4} ordered by
the usual ‘less than or equal to’. In this poset, 3 covers 2 as 2 < 3, but there is no
number x in the set where 2 < x < 3.

The concept of covering allows us to illustrate the structure of the poset. First
if a < b, then b is drawn higher than a in the diagram. Second, if b covers a,
a ≺ b, then we connect a and b with a line. Figure 1 shows the diagrams for our
posets ({1, 2, 3, 4},�) and (℘({a, b, c}), ⊆). Picking any element on the diagram of
(℘({a, b, c}), ⊆), one can immediately identify which elements contain it as a subset
by following all of the lines upward from that element. Similarly, one can find all of
the elements that it contains by following the lines downward.

In figure 1b, if you choose two elements in the diagram, say {a} and {b}, and follow
the lines upward, the first common element that includes both {a} and {b} is {a, b},
which is called their join. The join of elements x and y is written generally as x ∨ y,
thus {a} ∨ {b} = {a, b}. Dually, if we choose two elements, say {a, b} and {b, c}, we
find that the first common element that they both include is {b}, which we call their
meet. The meet of two elements x and y is written x∧y. In the powerset example, the
join of two elements can be found by taking their set union, and their meet can be
found by taking their set intersection. However, join and meet correspond to other
operations in other posets.
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If the meet and join always exist—and are commutative, associative, idempotent,
and obey the absorption law—then the poset is called a lattice. Associated with each
lattice is an algebra. By focusing on the hierarchical arrangement of the elements in
the poset, one sees the structure as a lattice. Whereas by focusing on the join and
meet as operations applied to its elements, one sees the structure as an algebra.

3. Boolean lattices

We now examine George Boole’s contribution to logic (Boole 1854) from the perspec-
tive of lattices. Consider a lattice based on a set of logical statements and ordered
with the relation ‘implies’, which we write as a → b. Thus in this lattice ‘�’ represents
‘→’. The statements in the set will be generated from a smaller set of exhaustive,
mutually exclusive statements. By exhaustive we mean that at least one of them is
true; whereas by mutually exclusive we mean that if one of them is true, then the
others are false. This gives us a basis set of statements (generally called atomic ele-
ments) where we are assured that one and only one is true. As an example consider
the possible atomic hypotheses representing accusations of who stole the tarts made
by the Queen of Hearts:†

a = ‘Alice stole the tarts!’,
k = ‘The Knave of Hearts stole the tarts!’,
n = ‘No one stole the tarts!’.

We can construct new logical statements by combining two statements in two dif-
ferent ways. First, the disjunction of two logical statements is a proposition that
says what the two say jointly. One can think of the disjunction as being represented
by the word ‘or’. By disjoining a and k above, we obtain a new statement, the join
a ∨ k, that says ‘Either Alice or the Knave of Hearts stole the tarts!’. Notice that
if ‘Alice stole the tarts!’ is true, then it implies that the disjunction is also true.
Thus ‘Alice stole the tarts!’ is included in ‘Either Alice or the Knave of Hearts stole
the tarts!’ so that a → a ∨ k. The second operation, the conjunction, is a statement
that tells what the two statements tell in common. This is represented by the word
‘and’, and is given in the lattice by the meet operation. Thus the conjunction of two
logical statements a and b is a ∧ b. Because the logical symbols for disjunction ‘∨’
and conjunction ‘∧’ are identical to, and in this lattice signify the same operations
as, the join and the meet, respectively, it is important to remember that the meaning
of the symbols for the join ‘∨’ and the meet ‘∧’ depend on the particular lattice.

Figure 1c shows the lattice diagram for all the possible disjunctions of the three
atomic statements. Notice that implication is directed upward, so that if any lower
element is known to be true, all the connected elements above it are also known to be
true. Working with the truth values of propositions on this lattice is called deductive
logic. This type of lattice structure is called a Boolean lattice, and its associated
algebra is a Boolean algebra. Boolean lattices have another interesting property—
for every element x, there exists another unique element x′ called its complement,
such that x ∨ x′ = �, where � is the top element formed by the disjunction of all

† Chapters XI and XII in Alice’s adventures in wonderland by Lewis Carroll, originally published in
1865. Lewis Carroll (Charles Lutwidge Dodgson) was also a logician who did important work in symbolic
logic.
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the atomic elements, and x ∧ x′ = ⊥, which is the bottom element formed by their
conjunction. Note, also, that our powerset lattice has the same structure as the lattice
of logical statements with the ordering relation ‘→’. They are both Boolean lattices
and both have operations which follow a Boolean algebra.

4. Derivation of probability from logic

Cox’s contribution (1946, 1961) was to generalize logical implication to degrees of
implication represented by real numbers. This allows one to talk about the degree to
which a statement a implies a statement b, written as (a → b). To ease the transition
to probability, we will write (a → b) as a function p(b | a) of the assertions a and b.
The first goal is to figure out how to calculate the degree to which a premise i
implies a conjunction of two statements a ∧ b. Cox assumes that this is a function of
the degree to which i implies a and the degree to which a ∧ i implies b:

p(a ∧ b | i) = F [p(a | i), p(b | a ∧ i)], (4.1)

where F [·, ·] is a function to be determined. This function will tell us how to do the
calculation. It is found by maintaining consistency with Boolean logic. If we consider
a statement formed from the conjunction of three propositions a ∧ b ∧ c, we can use
associativity of the lattice to write this two ways: (a ∧ b) ∧ c or a ∧ (b ∧ c). Then we
can use (4.1) above to rewrite the degree p(a ∧ b ∧ c | i) two different ways in terms
of F . Consistency requires that they are equal:

F [p(a ∧ b | i), p(c | (a ∧ b) ∧ i)] = F [p(a | i), p((b ∧ c) | a ∧ i)]. (4.2)

Writing p(a ∧ b | i) and p((b ∧ c) | a ∧ i) above in terms of F , and substituting
x = p(a | i), y = p(b | a ∧ i) and z = p(c | a ∧ b ∧ i), we get a simple functional equa-
tion

F [F [x, y], z] = F [x, F [y, z]], (4.3)

which has as its solution† F [x, y] = xy. So that from (4.1) we have the familiar
product rule of probability theory,

p(a ∧ b | i) = p(a | i)p(b | i ∧ a), (4.4)

which we see is required by consistency with associativity (Smith & Erickson 1990).
The sum rule of probability is derived similarly by noting that the degree to which

the premise i implies the complement of a statement a′ depends on the degree to
which i implies the original statement a: p(a′ | i) = G[p(a | i)]. However, the com-
plement of the complement of a statement is the original statement so we have the
functional relation p(a | i) = G[G[p(a | i)]], which leads to

p(a | i) + p(a′ | i) = 1. (4.5)

Last, we consider commutativity of the conjunction, where p(a∧b | i) = p(b∧a | i).
Applying the product rule to both sides we get p(a | i)p(b | a∧ i) = p(b | i)p(a | b∧ i).
Solving for p(b | a ∧ i) gives Bayes’ theorem,

p(b | a ∧ i) = p(b | i)
p(a | b ∧ i)

p(a | i)
, (4.6)

† There is a more general solution, but it only serves to set the scale and offset of the logarithm of
the probability.
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which allows one to write p(b | a ∧ i) in terms of p(a | b ∧ i), thus turning around the
inference.

From this point on we will recognize that probability is a real number describing
the degree of implication on a lattice of logical statements. Thus we have devel-
oped probability theory as a description of one’s state of knowledge regarding logical
propositions. As described in the introduction, this approach is much more general
than frequentist statistics, which regards probability as representing the frequency
of event occurrences. It is also important to realize that these rules are the only log-
ically consistent way of manipulating probabilities. Any other rules will eventually
lead to a contradiction violating logical consistency (e.g. Cheeseman 1985). This is
a fact that has only recently been realized by the artificial intelligence community,
largely due to the introduction of Bayesian networks or Bayes nets (Pearl 1988),
which combine probability theory with graphical models.

5. Automating inference

The humble origin of Bayes’ theorem belies the power that this relation wields. First
we consider a hypothesis about a situation we wish to understand. This hypothe-
sis could be a simple statement as in the ‘stolen tarts’ example, or it could be a
compound hypothesis formed by taking the logical conjunction of several hypothe-
ses. This is useful in science when one has a parametrized model of a situation.
We can conjoin hypotheses describing the model like h1 = ‘parameter p = 2.9!’,
and h2 = ‘parameter q = 6.4!’ to form model = h1 ∧ h2. In such a situa-
tion, we have a hypothesis space defined by all possible hypotheses we could
consider. In addition to our hypothesis, we may have some acquired data d =
‘I measured r to have a value of 2.3!’. The premise i represents our knowledge about
the problem prior to obtaining new data. Rewriting Bayes’ theorem (4.6) by replacing
a with data and b with model we get

p(model | data ∧ i) = p(model | i)
p(data | model ∧ i)

p(data | i)
. (5.1)

The first term on the right, p(model | i), called the prior probability or prior, rep-
resents the degree to which we believe the model is correct given only our prior
information i. The term in the numerator p(data | model ∧ i) is called the likeli-
hood, which represents the degree to which we believe that the situation described
by the model could have resulted in the observed data. The term in the denominator
p(data | i) is called the evidence and it represents the degree to which we believe
the data could have been observed based only on our prior information. Finally, the
result on the left p(model | data∧i) is called the posterior probability, which describes
how our initial state of knowledge p(model | i) is updated with the acquisition of
new information. Bayes’ theorem is thus a learning rule that allows us to improve
our state of knowledge as we gain new information!

Keep in mind that these probabilities are not to be thought of as frequencies of
event occurrences, but rather they represent the degree to which one believes that
a logical statement is true. This results in a much broader range of application. To
use this methodology we must assign values to the necessary priors and likelihoods
that appear on the right-hand side of the equation. The assignment of priors often
causes concern among those who practice frequentist statistics. However, they assign
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Figure 2. (a) Stars uniformly distributed in space are more probable to be distant from Earth
than near it. (b) The origin of stellar parallax. (c) The resulting posterior is narrower than the
prior—we have learned something. (d) After incorporating five new measurements, the posterior
has grown in amplitude (compare with prior), reflecting the high probability of the solutions,
and has narrowed, reflecting a more refined solution.

likelihoods, which they call sampling distributions, and neglect priors, which assumes
that they are the same for all hypotheses. How to assign prior probabilities in a
logically consistent manner is an area of ongoing study. One useful method (Jaynes
1968) generalizes Bernoulli’s probability assignments by accounting for symmetries in
one’s state of knowledge, which can be used in conjunction with ‘maximum entropy’
to incorporate known constraints (Jaynes 1957, 1979).

We will now demonstrate how this is used to develop a machine-learning system
that can use data to understand a physical system. We recommend that the interested
reader consult these practical works and tutorials: Bretthorst (1988), Loredo (1990),
Hanson (1993), Skilling (1998), Dose (2002), and especially Sivia (1996).

Consider a nearby star to which we would like to determine the distance d. Hypoth-
esizing a value for this distance will constitute our model of this situation. Before we
begin thinking about measurements, we know that nearby stars are approximately
uniformly distributed in space. Thus the star has an equal chance to be in any given
volume element of space up to a maximum resolvable distance. These little volume
elements of space are the equal-probability cases of Bernoulli. However, we want a
probability for the distance to the star. At a given d, the star must be in a thin
shell with radius d. The volume of these shells gets bigger with d2 (figure 2a). So
a prior probability p(d | i) ∝ d2, up to a maximum resolvable distance, reflects our
expectation that stars are uniformly distributed in space.

As the Earth orbits the Sun, the star’s apparent position in the sky changes
with respect to the more distant stars (figure 2b). This measured angular position
change θ is called the parallax and will constitute our data. Parallax is inversely
related to distance θ = 1/d, with 1 milliarcsecond of angle corresponding to 1 parsec
(3.26 light years). We can use this relation to predict a value for the parallax given
a hypothesized value for d. With some knowledge of the errors of our measurements
we can write the likelihood p(θ | d ∧ i) as a Gaussian distribution centred about
the parallax predicted by d. One can think of the likelihood in terms of the forward
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problem where we start with our model and compute what it predicts we should
observe. The difference between the prediction and the observed data is represented
by the likelihood. In cases where no analytic equation exists (like θ = 1/d), complex
simulations must be employed to make predictions from the model.

Using Bayes’ theorem, we plot the posterior probability (figure 2c), which is pro-
portional to the product of the prior and likelihood, as a function of all the possible
values of distance. Plotted as a function of d the likelihood no longer looks symmet-
ric, due to the inverse relation between d and θ. The important point is that the
posterior is narrower than the prior, which means that we have ruled out possibil-
ities and have learned something from the data. The posterior for the first datum
point can now be used as a prior for a newly acquired measurement. Repeating this
process several times results in a more certain value for the distance to the star (fig-
ure 2d). Bayes’ theorem thus allows us to automate an inference procedure, taking
into account prior knowledge as well as new data.

We are currently working on a more complex version of this problem where we
are estimating the distances to planetary nebulae, which are the outer atmospheres
of Sun-like stars that have been thrown off during their collapse. These clouds of
gas expand in time and we can use multiple images taken over time along with the
Doppler shifts in their spectral lines due to their expansion velocity to simultane-
ously model the three-dimensional structure of these objects while estimating their
distances from Earth (Knuth & Hajian 2002).

6. Questions and the logic of inquiry

While the mathematics of inference has become well understood in the twentieth
century, we are only beginning to understand the mathematics of inquiry. Cox (1979),
in his last work, defined a question as the set of all possible statements that answer
it. To be assured that this set contains every statement that answers the question,
the set must also include all statements that imply any statement already in the set,
as these statements also answer the question. In lattice theory, such a set is called a
down-set as it is generated by a given set of elements in the lattice and everything
below them. Several key down-sets in the statement lattices are shown in figure 3.

Given this definition, two questions are equivalent if they are answered by the same
down-set of statements. Two such questions are ‘Is it raining?’ and ‘Is it not rain-
ing?’. They are both answered by the same down-set generated by the statements ‘It
is raining!’ and ‘It is not raining!’, and thus are equivalent as they ask the same thing.
Furthermore, we can impose an ordering relation on questions, as the set of answers
to one question may be a subset of the set of answers to another. Consider the ques-
tion T = ‘Who stole the tarts made by the Queen of Hearts all on a summer day?’,
which I will write concisely using the set (see the down-set in the lower right-hand
corner of figure 3)

T = {a = ‘Alice stole the tarts!’,

k = ‘The Knave of Hearts stole the tarts!’,

n = ‘No one stole the tarts!’}. (6.1)
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Figure 3. The lattice of all questions (centre) generated by three mutually exclusive statements.
Examples of the down-sets defining several questions are shown, including T and B discussed in
the text (right). The ordering relation ‘is a subset of’ is applied to the down-sets of statements,
so that lower questions answer higher questions.

We can also consider the binary question B = ‘Did or did not Alice steal the tarts?’,
which can be written concisely as

B = {a = ‘Alice stole the tarts!’,

a′ = ‘Alice did not steal the tarts!’}. (6.2)

As the defining set of T is exhaustive, the statement ‘Alice did not steal the tarts!’
is equivalent to the statement ‘Either the Knave of Hearts or no one stole the tarts!’,
written a′ = k∨n. As B is a down-set (see figure 3), it must contain all the statements
that imply a′, which are k and n. Thus the set T is a subset of B, and by answering
the question T , we will have also answered the question B. The converse is not true
as if we obtain as an answer to B that ‘Alice did not steal the tarts!’, then we still
will have not answered T .

At this stage, we are well on our way to constructing the lattice of all questions
that can be asked relative to the issue ‘Who stole the tarts?’. With the ordering
relation ‘is a subset of’, or equivalently ‘answers’, we can show that the conjunction
or meet of two questions is the intersection of the down-sets of statements answering
each question, so that X ∧ Y ≡ X ∩ Y . This results in a question which asks what
the two ask jointly, thus earning it the name of the joint question. Similarly, the
disjunction or join of two questions, called the common question, is formed from the
union of the two down-sets of statements answering each question, X ∨ Y ≡ X ∪ Y ,
and as such asks what the two questions ask in common.

The lattice of questions can be formed by considering all the possible down-sets
of the assertion lattice and ordering them appropriately. As writing a question in
terms of its assertions can be quite lengthy, we use the notation where A represents
the down-set formed by descending the assertion lattice from the element a (fig-
ure 3), AK represents the down-set formed from the element a ∨ k (figure 3), and
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AKN represents the down-set formed from the element a ∨ k ∨ n. The elements of
the question lattice are then formed from all possible disjunctions of the questions
A, K, N, AK, AN, KN, AKN . As an example, the question B in the example above
is written B ≡ A ∪ KN denoting that its possible answers derive from a and k ∨ n.

Figure 3 (centre) shows the question lattice for the three mutually exclusive state-
ments in our stolen tarts example (Knuth 2002). As this lattice is not Boolean,
questions do not possess complements. Instead, it is known as the free distributive
lattice, and as it is associative and distributive, it possesses a measure analogous
to probability, which following its own sum and product rules describes the degree
to which one question answers another. This measure, called bearing or relevance,
allows one to compute the relevance that a question Q has on an outstanding issue I,
denoted b(Q | I). The notation, introduced by Robert Fry, represents an upside-down
p reflecting the relationship between relevance on the question lattice and probabil-
ity on the statement lattice. The sum and product rules of relevance comprise the
calculus of inquiry.

While the exact relationship between probabilities on the statement lattice and the
relevances on the question lattice are still being explored, the results obtained to date
(Cox 1979; Fry 1999; Knuth 2002) suggest that relevance can be represented in terms
of the entropy of the probabilities, and that the inquiry calculus is a generalization
of information theory. This has intuitive appeal, as the probabilities then represent
what is known, while relevances or entropies represent what is not known. This is also
suggested by the relationships between the lattices (Knuth 2002) since the map from
the Boolean lattice of logical statements to the free distributive lattice of questions
acts like an exponential function, and the inverse map acts like the logarithm (Davey
& Priestley 2002).

The idea of using entropy to quantify inquiry also makes sense from an information-
theoretic standpoint, where the design of a communication channel can be interpreted
as the design of a question to be asked of the transmitter. Entropy has been used since
the 1950s in the area of experimental design (Lindley 1956; Fedorov 1972; Luttrell
1985), which is a scientific form of question asking. More recently, in the area of
active learning, where machine-learning systems actively decide which measurements
to take, or which experiments to perform, entropy-based quantities have also proven
useful (MacKay 1992). Searching for an optimal solution to a problem implicitly relies
on question asking, and entropy has found use here as well (Pierce 1979; Jaynes 1985).
Intelligent searching is also important in dealing with the exploration–exploitation
trade-off in reinforcement learning, where systems learn by interacting with their
environments (Sutton & Barto 1998).

While the justifications for entropy-based measures are reasonable, these quantities
are obtained in an ad hoc manner. As a result, it is often found that the questions
they represent are not always the precise questions of interest (see criticisms in
MacKay (1992)). The question algebra and the inquiry calculus promise to enable us
to derive such measures and ensure their logical consistency. It will not be necessary
to draw elaborate lattice diagrams, as questions can be constructed using the join
and meet operations of the algebra and computations can be performed using the
sum and product rules of the calculus. We may even find some problems to be
solvable entirely in the question space without resorting to the probabilities of the
answers.
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7. Generalization of the methodology

There are two very important realizations to be made. First, the concept of generaliz-
ing inclusion on a lattice to a degree of inclusion can be made on any kind of lattice.
Thus we expect that there are other rules analogous to the sum and product rules
we described here that exist in other disciplines. For example, the Boolean algebra
of sets has led to the development of geometric probability, where the measures are
geometric quantities rather than probabilities (Klain & Rota 1997). Ariel Caticha
(1998) has shown how the sum and product rules can be derived from associativity
and distributivity, respectively, thus indicating that any lattice that has the dis-
tributive property has associated with it a degree of inclusion that follows a sum and
product rule (Knuth 2003). In addition, the cross-ratio in projective geometry has
been shown to have the same form as the odds-ratio in Bayesian inference (Rodŕıguez
1991), which is now believed to derive from the fact that the projective lattice also
exhibits associativity (Knuth 2002). Fry has also demonstrated that this methodol-
ogy is applicable to the area of control in cybernetic systems (Fry 2002). Second,
degrees of inclusion do not need to be represented by real numbers. Complex num-
bers and quaternions also conform to Cox’s consistency requirements (Youssef 1994;
also S. Youssef (2001), unpublished work), as do the more general Clifford alge-
bras (Rodŕıguez 1998), which are multivectors in the geometric algebra (Hestenes
& Sobczyk 1984) described in Lasenby et al . (2000). Furthermore, Caticha (1998)
has derived the calculus of wave function amplitudes and the Schrödinger equation
entirely by constructing a poset of experimental set-ups and using the consistency
requirements with degrees of inclusion represented with complex numbers. This leads
to a very satisfying description of quantum mechanics in terms of measurements,
which explains how it looks like probability theory—yet is not. We expect that the
generalizations of lattice theory described here will not only identify unrecognized
relationships among disparate fields, but also allow new measures to be developed
and understood at a very fundamental level.

8. Automating both inference and inquiry

Automation of inference and inquiry will allow machines to learn from data, and
ask relevant questions to obtain new data. This promises to automate the scientific
method within a framework defined by a set of possible experiments and a set of
hypothesized theoretical models. Imagine a robot that has drilled through Europa’s
icy crust to emerge into an immense ocean far from any possible human intervention.
Designed to resolve the issue ‘Is there life in Europa’s ocean?’, the machine calculates
the most relevant experimental question to ask given what it knows about Europa.
In this calculation, the machine may also take into account the energy cost of each
experiment. What is learned in each experiment will help it decide which successive
experiment to perform to resolve the scientific issue.

While independently behaving, learning machines will find great use in science,
they will most likely pervade our lives in ways we have not yet imagined. The method-
ology to construct such thinking machines is becoming clear; however, they will be
constrained to work within a framework defined by a set of hypotheses. Techniques
are needed to automatically generate new hypotheses for machines to entertain. Such
flashes of inspiration serving to change the way the world is perceived often occur

Phil. Trans. R. Soc. Lond. A (2003)



Inference and inquiry 2871

through generalizations and analogies, which are not obviously related to any logical
procedure of inference or inquiry.

This work was supported by the NASA IDU/IS/CICT Program and the NASA Aerospace
Technology Enterprise.
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