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Histograms are convenient non-parametric density estimators, which continue to be used ubiquitously. 
Summary quantities estimated from histogram-based probability density models depend on the choice 
of the number of bins. We introduce a straightforward data-based method of determining the optimal 
number of bins in a uniform bin-width histogram. By assigning a multinomial likelihood and a non-
informative prior, we derive the posterior probability for the number of bins in a piecewise-constant 
density model given the data. In addition, we estimate the mean and standard deviations of the resulting 
bin heights, examine the effects of small sample sizes and digitized data, and demonstrate the application 
to multi-dimensional histograms.
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1. Introduction

Histograms are used extensively as non-parametric density es-
timators both to visualize data and to obtain summary quantities, 
such as the entropy, of the underlying density. However in practice, 
the values of such summary quantities depend on the number of 
bins chosen for the histogram, which given the range of the data 
dictates the bin width. The idea is to choose a number of bins 
sufficiently large to capture the major features in the data while 
ignoring fine details due to ‘random sampling fluctuations’. Sev-
eral rules of thumb exist for determining the number of bins, such 
as the belief that between 5 and 20 bins is usually adequate (for 
example, Matlab uses 10 bins as a default). Scott [1,2] and Freed-
man and Diaconis [3] derived formulas for the optimal bin width 
by minimizing the integrated mean squared error of the histogram 
model h(x) of the true underlying density f (x),

L(h(x), f (x)) =
∫

dx
(
h(x) − f (x)

)2
. (1)

For N data points, the optimal bin width v goes as αN−1/3, where 
α is a constant that depends on the form of the underlying dis-
tribution. Assuming that the data are normally distributed with a 
sample variance s gives α = 3.49s [1,2], and

vscott = 3.49sN−1/3. (2)
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Given a fixed range R for the data, the number of bins M then 
goes as

Mscott = � R

3.49s
N1/3�. (3)

Freedman and Diaconis report similar results, however they sug-
gest choosing α to be twice the interquartile range of the data. 
While these appear to be useful estimates for unimodal densities 
similar to a Gaussian distribution, they are known to be subopti-
mal for multimodal densities. This is because they were derived 
by assuming particular characteristics of the underlying density. 
In particular, the result obtained by Freedman and Diaconis is not 
valid for some densities, such as the uniform density, since it de-
rives from the assumption that the density f satisfies 

∫
f ′ 2 > 0.

Another approach by Stone [4] relies on minimizing

L(h, f ) −
∫

f 2

to obtain a rule where one chooses the bin width v to minimize

K (v, M) = 1

v

(
2

N − 1
− N + 1

N − 1

M∑
m=1

π2
i

)
(4)

where M is the number of bins and πi are the bin probabilities. 
Rudemo obtains a similar rule by applying cross-validation tech-
niques with a Kullback-Leibler risk function [5].

We approach this problem from a different perspective. Since 
the underlying density is not known, it is not reasonable to use an 
optimization criterion that relies on the error between our den-
sity model and an unknown true density. Instead, we consider 
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the histogram to be a piecewise-constant model of the underlying 
probability density. Using Bayesian probability theory we derive a 
straightforward algorithm that computes the posterior probability 
of the number of bins for a given data set. Within this framework 
defined by our likelihood and prior probability assignments, one 
can objectively select an optimal piecewise-constant model de-
scribing the density function from which the data were sampled.

It should be emphasized that this paper considers equal bin 
width piecewise-constant density models where one possesses lit-
tle to no prior information about the underlying density from 
which the data were sampled. In many applications, variable bin 
width models [6–10] may be more efficient or appropriate, and 
certainly if one possesses prior information about the underlying 
density, a more appropriate model should be considered.

2. The piecewise-constant density model

We are given a dataset consisting of N data values that were 
sampled from an unknown probability density function. The sam-
pled data values are assumed to be known precisely so that there 
is no additional measurement uncertainty associated with each 
datum. We begin by considering the histogram as a piecewise-
constant model of the probability density function from which N
data points were sampled. This model has M bins with each bin 
having equal width v = vk , where k is used to index the bins. To-
gether they encompass an entire range of data values V = M v . 
Note that for a one-dimensional histogram, vk is the width of the 
kth bin. In the case of a multi-dimensional histogram, this will be 
a multi-dimensional volume. Each bin has a “height” hk , which is 
the constant probability density over the region of the bin. Inte-
grating this constant probability density hk over the width of the 
bin vk leads to a probability mass of πk = hk vk for the bin. This 
results in the following piecewise-constant model h(x) of the un-
known probability density function f (x)

h(x) =
M∑

k=1

hk �(xk−1, x, xk), (5)

where hk is the probability density of the kth bin with edges de-
fined by xk−1 and xk , and �(xk−1, x, xk) is the boxcar function 
where

�(xa, x, xb) =
⎧⎨
⎩

0 if x < xa

1 if xa ≤ x < xb
0 if xb ≤ x

(6)

This density model can be re-written in terms of the bin probabil-
ities πk as

h(x) = M

V

M∑
k=1

πk �(xk−1, x, xk). (7)

It is important to keep in mind that h(x) is not a histogram, but 
rather it is a piecewise-constant probability density function. The 
bin heights hk represent the probability density assigned to the kth 
bin, and the parameters πk represents the probability mass of the 
kth bin.

Given M bins and the normalization condition that the inte-
gral of the probability density equals unity, we are left with M − 1
bin probabilities: π1, π2, . . . , πM−1, each describing the probability 
that samples will be drawn from each of the M bins. The normal-
ization condition requires that πM = 1 − ∑M−1

k=1 πk . For simplicity, 
we assume that the bin alignment is fixed so that extreme data 
points define the edges of the extreme bins.
2.1. The likelihood of the piecewise-constant model

The likelihood function is a probability density that when mul-
tiplied by dx describes the probability that a datum dn is found 
to have a value in the infinitesimal range between some number 
x and x + dx. Since we have assumed that there is no additional 
measurement uncertainty associated with each datum, the likeli-
hood that dn will have a value between x and x + dx falling within 
the kth bin is given the uniform probability density in the region 
defined by that bin

p(dn|πk, M, I) = hk = πk

vk
(8)

where I represents our prior knowledge about the problem, which 
includes the range of the data and the bin alignment. For equal 
width bins, the likelihood density reduces to

p(dn|πk, M, I) = M

V
πk. (9)

For N independently sampled data points, the joint likelihood is 
given by

p(d|π, M, I) =
(

M

V

)N

πn1
1 π

n2
2 . . .π

nM−1
M−1 πnM

M (10)

where d = {d1, d2, . . . , dN}, π = {π1, π2, . . . , πM−1}, and the ni

are the number of data points in the ith bin. Equation (10) is 
data-dependent and describes the likelihood that the hypothesized 
piecewise-constant model accounts for the data. Individuals who 
recognize this as having the form of the multinomial distribution 
may be tempted to include its familiar normalization factor. How-
ever, it is important to note that this likelihood function is properly 
normalized as is, which we now demonstrate. For a single datum 
d, the likelihood that it will take the value x is

p(d = x|π, M, I) = 1

v

M∑
k=1

πk �(xk−1, x, xk), (11)

where we have written v = V
M . Multiplying the probability density 

by dx to get the probability and integrating over all possible values 
of x we have

∞∫
−∞

dx p(d = x|π, M, I) =
∞∫

−∞
dx

1

v

M∑
k=1

πk �(xk−1, x, xk)

= 1

v

M∑
k=1

∞∫
−∞

dx πk �(xk−1, x, xk)

= 1

v

M∑
k=1

πk v

=
M∑

k=1

πk

= 1. (12)

2.2. The prior probabilities

For the prior probability of the number of bins, we assign a 
uniform density

p(M|I) =
{

C−1 if 1 ≤ M ≤ C
0 otherwise

(13)
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where C is the maximum number of bins to be considered. This 
could reasonably be set to the range of the data divided by small-
est non-zero distance between any two data points.

We assign a non-informative prior for the bin parameters 
π1, π2, . . . , πM−1, the possible values of which lie within a sim-
plex defined by the corners of an M-dimensional hypercube with 
unit side lengths

p(π |M, I) = �
( M

2

)
�
( 1

2

)M

[
π1π2 · · ·πM−1

(
1 −

M−1∑
i=1

πi

)]−1/2

. (14)

Equation (14) is the Jeffreys’s prior for the multinomial likelihood 
(10) [11–13], and has the advantage in that it is also the conjugate 
prior to the multinomial likelihood. The result is that the posterior 
probability is a Dirichlet-multinomial distribution, which is widely 
used in machine learning [14]. A similar posterior probability is 
used by Endres and Foldiak [9] to solve the more general problem 
of variable-width bin models.

2.3. The posterior probability

Using Bayes’ Theorem, the posterior probability of the his-
togram model is proportional to the product of the priors and the 
likelihood

p(π, M|d, I) ∝ p(π |M, I) p(M|I) p(d|π, M, I). (15)

Substituting (10), (13), and (14) gives the joint posterior probabil-
ity for the piecewise-constant density model

p(π, M|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

× π
n1− 1

2
1 π

n2− 1
2

2 . . . π
nM−1− 1

2
M−1

(
1 −

M−1∑
i=1

πi

)nM− 1
2

,

(16)

where p(M|I) is absorbed into the implicit proportionality con-
stant with the understanding that we will only consider a reason-
able range of bin numbers.

The goal is to obtain the posterior probability for the number of 
bins M . To do this we integrate the joint posterior over all possible 
values of π1, π2, . . . , πM−1 in the simplex. While the result (30) is 
well-known [15,14], it is instructive to see how such integrations 
can be handled. The expression we desire is written as a series of 
nested integrals over the M − 1 dimensional parameter space of 
bin probabilities

p(M|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

1∫
0

dπ1 π
n1− 1

2
1

1−π1∫
0

dπ2 π
n2− 1

2
2 . . .

(17)

. . .

(1−∑M−2
i=1 πi)∫

0

dπM−1 π
nM−1− 1

2
M−1

(
1 −

M−1∑
i=1

πi

)nM− 1
2

.

In order to write this more compactly, we first define

a1 = 1

a2 = 1 − π1

a3 = 1 − π1 − π2

...
aM−1 = 1 −
M−2∑
k=1

πk (18)

and note the recursion relation

ak = ak−1 − πk−1. (19)

These definitions greatly simplify the sum in the last term as well 
as the limits of integration

p(M|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

a1∫
0

dπ1 π
n1− 1

2
1

a2∫
0

dπ2 π
n2− 1

2
2 . . .

. . .

aM−1∫
0

dπM−1 π
nM−1− 1

2
M−1 (aM−1 − πM−1)

nM− 1
2 . (20)

To solve the set of nested integrals in (17), consider the general 
integral

Ik =
ak∫

0

dπk π
nk− 1

2
k (ak − πk)

bk . (21)

This integral can be re-written as

Ik = abk
k

ak∫
0

dπk π
nk− 1

2
k

(
1 − πk

ak

)bk

. (22)

Setting u = πk

ak
we have

Ik = abk
k

1∫
0

du a
nk+ 1

2
k unk− 1

2 (1 − u)bk

= a
bk+nk+ 1

2
k

1∫
0

du unk− 1
2 (1 − u)bk ,

= a
bk+nk+ 1

2
k B(nk + 1

2
,bk + 1) (23)

where B(·) is the Beta function with

B(nk + 1

2
,bk + 1) = �

(
nk + 1

2

)
�(bk + 1)

�
(
nk + 1

2 + bk + 1
) . (24)

To solve all of the integrals we rewrite ak in (23) using the recur-
sion formula (19)

Ik = (ak−1 − πk−1)
bk+nk+ 1

2 B(nk + 1

2
,bk + 1). (25)

By defining

bM−1 = nM − 1

2

bk−1 = bk + nk + 1

2
(26)

we find

b1 = N − n1 + M

2
− 3

2
. (27)

Finally, integrating (20) gives
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p(M|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

M−1∏
k=1

B(nk + 1

2
,bk + 1),

which can be simplified further by expanding the Beta functions 
using (24)

p(M|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

× �(n1 + 1
2 )�(b1 + 1)

�(n1 + 1
2 + b1 + 1)

× �(n2 + 1
2 )�(b2 + 1)

�(n2 + 1
2 + b2 + 1)

× . . . × �(nM−1 + 1
2 )�(bM−1 + 1)

�(nM−1 + 1
2 + bM−1 + 1)

(28)

Using the recursion relation (26) for the bk , we see that the general 
term �(bk + 1) in each numerator, except the last, cancels with the 
denominator in the following term. This leaves

p(M|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

∏M
k=1 �(nk + 1

2 )

�(n1 + b1 + 3
2 )

, (29)

where we have used (26) to observe that �(bM−1 + 1) = �(nM +
1/2). Last, again using the recursion relation in (26) we find that 
b1 = N −n1 + M

2 − 3
2 , which results in our marginal posterior prob-

ability

p(M|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

∏M
k=1 �(nk + 1

2 )

�(N + M
2 )

. (30)

The implicit proportionality constant is Z−1, where Z is the 
Bayesian evidence found by summing over all the possible num-
bers of bins

Z =
Mmax∑
M=1

p(M|d, I). (31)

Since the evidence is found by summing over the numbers of bins, 
it depends only on the data d. For this reason, we will work with 
the un-normalized posterior, and shall refer to its values as relative 
posterior probabilities.

In optimization problems, it is often easier to maximize the log-
arithm of the posterior

log p(M|d, I) = N log M + log�

(
M

2

)
− M log �

(
1

2

)

− log �

(
N + M

2

)
+

M∑
k=1

log�

(
nk + 1

2

)

+ K , (32)

where K represents the sum of the volume term and the loga-
rithm of the implicit proportionality constant, which is the inverse 
of the Bayesian evidence. The optimal number of bins M̂ is found 
by identifying the mode of the logarithm of the marginal poste-
rior

M̂ = arg max
M

{log p(M|d, I)}. (33)

Such a result is reassuring, since it is independent of the or-
der in which the bins are counted. Many software packages are 
equipped to quickly compute the log of the gamma function. How-
ever, for more basic implementations, the following definitions 
from Abramowitz and Stegun [16] can be used for integer m:
log �(m) =
m−1∑
k=1

log k (34)

log �

(
m + 1

2

)
= 1

2
logπ − m log 2 +

m∑
k=1

log (2k − 1). (35)

Equation (32) allows one to easily identify the number of bins 
M which optimize the posterior. We call this the OPTBINS algo-
rithm1 and provide the Matlab code in the Appendix.

3. The posterior probability for the bin height

In order to obtain the posterior probability for the probability 
mass of a particular bin, we begin with the joint posterior (16) and 
integrate over all the other bin probability masses. Since we can 
consider the bins in any order, the resulting expression is similar 
to the multiple nested integral in (17) except that the integral for 
one of the M − 1 bins is not performed. Treating the number of 
bins as a given, we can use the product rule to get

p(π |d, M, I) = p(π, M|d, I)

p(M|d, I)
(36)

where the numerator is given by (16) and the denominator by (30). 
Since the bins can be treated in any order, we derive the marginal 
posterior for the first bin and generalize the result for the kth bin. 
The marginal posterior is

p(π1|d, M, I) =
( M

V )N �
( M

2

)
�
( 1

2

)M

p(M|d, I)
π

n1− 1
2

1

×
a2∫

0

dπ2 π
n2− 1

2
2

a3∫
0

dπ3 π
n3− 1

2
3 . . .

. . .

aM−1∫
0

dπM−1 π
nM−1− 1

2
M−1 (aM−1 − πM−1)

nM− 1
2 .

(37)

Evaluating the integrals and substituting (28) into the denominator 
we get

p(π1|d, M, I) =
∏M−1

k=2 B(nk + 1
2 ,bk + 1)∏M−1

k=1 B(nk + 1
2 ,bk + 1)

π
n1− 1

2
1 (1 − π1)

b1 . (38)

Canceling terms and explicitly writing b1, the marginal posterior 
for π1 is

p(π1|d, M, I)

= �(N + M
2 )

�(n1 + 1
2 )�(N − n1 + M−1

2 )
π

n1− 1
2

1 (1 − π1)
N−n1+ M−3

2 ,

(39)

which can easily be verified to be normalized by integrating π1

over its entire possible range from 0 to 1. Since the bins can be 
considered in any order, this is a general result for the kth bin

p(πk|d, M, I)

= �(N + M
2 )

�(nk + 1
2 )�(N − nk + M−1

2 )
π

nk− 1
2

k (1 − πk)
N−nk+ M−3

2 . (40)

1 The method has also been referred to as the Knuth method.
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The mean bin probability mass can be found from its expecta-
tion

〈πk〉 =
1∫

0

dπk πk p(πk|d, M, I), (41)

which substituting (40) gives

〈πk〉 = �(N + M
2 )

�(nk + 1
2 )�(N − nk + M−1

2 )

×
1∫

0

dπk π
nk+ 1

2
k (1 − πk)

N−nk+ M−3
2 . (42)

The integral again gives a Beta function, which when written in 
terms of Gamma functions is

〈πk〉 = �(N + M
2 )

�(nk + 1
2 )�(N − nk + M−1

2 )

× �(nk + 3
2 )�(N − nk + M−1

2 )

�(N + M
2 + 1)

. (43)

Using the fact that �(x + 1) = x�(x) and canceling like terms, we 
find that

〈πk〉 = nk + 1
2

N + M
2

. (44)

The mean probability density for bin k (the bin height) is simply

μk = 〈hk〉 = 〈πk〉
vk

=
(

M

V

)(
nk + 1

2

N + M
2

)
. (45)

It is an interesting result that bins with no counts still have a non-
zero probability. This makes sense since no lack of evidence can 
ever prove conclusively that an event occurring in a given bin is 
impossible—just less probable. The Jeffrey’s prior effectively places 
one-half of a datum in each bin.

The variance of the probability mass of the kth bin is found 
similarly by

σ 2
k =

(
M

V

)2(〈π2
k 〉 − 〈πk〉2), (46)

which gives

σ 2
k =

(
M

V

)2( (nk + 1
2 )(N − nk + M−1

2 )

(N + M
2 + 1)(N + M

2 )2

)
. (47)

Thus, given the optimal number of bins found by maximizing 
(32), the mean and variance of the bin probabilities are found from 
(45) and (47), which allow us to construct an explicit histogram 
model of the probability density and perform computations replete 
with proper error analysis. Note that in the case where there is one 
bin (47) gives a zero variance.

4. Results

4.1. Demonstration using one-dimensional histograms

In this section we demonstrate the utility of this method for 
determining the optimal number of bins in a piecewise-constant 
density model by applying this method to several different data 
sets. Note that since it is computationally costly to marginalize 
the posterior probability (30) to obtain the appropriate normaliza-
tion factor, the analyses below rely on the un-normalized posterior 
probability, the logarithms of which will be referred to the relative 
log posterior. We consider four different test cases where we have 
sampled 1000 data points from each of the four different probabil-
ity density functions.

The first example considers a Gaussian probability density 
N (0, 1). The optimal piecewise-constant density model for the 
1000 data points sample d from this distribution is shown in 
Fig. 1A, where it is superimposed over a 100-bin histogram that 
better illustrates the locations of the sampled points. Fig. 1B shows 
that the relative log posterior probability (32) peaks at 14 bins. 
Note that the bin heights for the piecewise-constant density model 
are determined from (44); whereas the bin heights of the 100-bin 
histogram illustrating the data samples are proportional to the 
counts. For this reason, the two pictures are not directly compara-
ble.

The second example considers a 4-step constant piecewise den-
sity. Fig. 1C shows the optimal binning for the 1000 sampled data 
points. The relative log posterior (Fig. 1D) peaks at 4 bins, which 
indicates that the method correctly detects the 4-step structure.

A uniform density is used to sample 1000 data points in the 
third example. Figs. 1E and 1F, demonstrate that samples drawn 
from a uniform density were best described by a single bin. This 
result is significant, since entropy estimates computed from these 
data would be biased if multiple bins were used to describe the 
distribution of the sampled data.

Last, we consider a density function that consists of a mix-
ture of three sharply-peaked Gaussians with a uniform background 
(Fig. 1G). The posterior peaks at 52 bins indicating that the data 
warrant a detailed model (Fig. 1H). The spikes in the relative log 
posterior are due to the fact that the bin edges are fixed. The rela-
tive log posterior is large at values of M where the bins happen to 
line up with the Gaussians, and small when they are misaligned. 
This last example demonstrates one of the weaknesses of the equal 
bin-width model, as many bins are needed to describe the uniform 
density between the three narrow peaks. In addition, the lack of an 
obvious peak indicates that there is a range of bin numbers that 
will result in reasonable models.

5. Effects of small sample size

5.1. Small samples and asymptotic behavior

It is instructive to observe how this algorithm behaves in situ-
ations involving small sample sizes. We begin by considering the 
extreme case of two data points N = 2. In the case of a single bin, 
M = 1, the posterior probability reduces to

p(M = 1|d1,d2, I) ∝ MN �
( M

2

)
�
( 1

2

)M

∏M
k=1 �(nk + 1

2 )

�(N + M
2 )

∝ 12 �
( 1

2

)
�
( 1

2

)1

�
(
2 + 1

2

)
�
(
2 + 1

2

) = 1, (48)

so that the log posterior is zero. For M > 1, the two data points lie 
in separate bins, resulting in

p(M|d1,d2, I) ∝ MN �
( M

2

)
�
( 1

2

)M

∏M
k=1 �(nk + 1

2 )

�(N + M
2 )

∝ M2 �
( M

2

)
�
( 1

2

)M

�(1 + 1
2 )2�( 1

2 )M−2

�(2 + M
2 )

∝ M2 �( 3
2 )2

�
( 1

2

)2

�
( M

2

)
�(2 + M

2 )

∝ 1

2
· M

1 + M
. (49)
2
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Fig. 1. To demonstrate the technique, 1000 samples were sampled from four different probability density functions. (A) The optimal piecewise-constant model for 1000 
samples drawn from a Gaussian density function is superimposed over a 100-bin histogram that shows the distribution of data samples. (B) The relative log posterior 
probability of the number of bins peaks at 14 bins for these 1000 data sampled from the Gaussian density. (C) Samples shown are from a 4-step piecewise-constant density 
function. The relative log posterior peaks at four bins (D) indicating that the method correctly detects the four-step structure. (E) These data were sampled from a uniform 
density as verified by the relative log posterior probability shown in (F), which starts at a maximum value of one and decreases with increasing numbers of bins. (G) Here 
we demonstrate a more complex example—three Gaussian peaks plus a uniform background. (H) The posterior, which peaks at 52 bins, demonstrates clearly that the data 
themselves support this detailed picture of the pdf.
Fig. 2A shows the log posterior which starts at zero for a single 
bin, drops to log( 1

2 ) for M = 2 and then increases monotonically 
approaching zero in the limit as M goes to infinity. The result is 
that a single bin is the most probable solution for two data points.
For three data points in a single bin (N = 3 and M = 1), the 
posterior probability is one, resulting in a log posterior of zero. In 
the M > 1 case where there are two data points in one bin and 
one datum point in another, the posterior probability is
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Fig. 2. These figures demonstrate the behavior of the relative log posterior for small numbers of samples. (A) With only N = 2 samples, the log posterior is maximum 
when the samples are in the same bin M = 1. For M > 1, the log posterior follows the function described in (49) in the text. (B) The relative log posterior is slightly more 
complicated for N = 3. For M = 1 all three points lie in the same bin. As M increases, two data points are in one bin and the remaining datum point is in another bin. The 
functional form is described by (50). Eventually, all three data points lie in separate bins and the relative log posterior is given by (51). (C) The situation is more complicated 
still for N = 5 data points. As M increases, a point is reached when, depending on the particular value of M , the points will be in separate bins. As M changes value, 
two points may again fall into the same bin. This gives rise to this oscillation in the log posterior. Once all points are in separate bins, the behavior follows a well-defined 
functional form (52). (D) This plot shows the behavior for a large number of data points N = 200. The log posterior now displays a more well-defined mode indicating that 
there is a well-defined optimal number of bins. As M approaches 10000 to 100000 bins, one can see some of the oscillatory behavior demonstrated in the small N cases.
p(M|d1,d2,d3, I) ∝ 3

4
· M2

(2 + M
2 )(1 + M

2 )
, (50)

and for each point in a separate bin we have

p(M|d1,d2,d3, I) ∝ 1

4
· M2

(2 + M
2 )(1 + M

2 )
. (51)

While the logarithm of the un-normalized posterior in (50) can be 
greater than zero, as M increases, the data points eventually fall 
into separate bins. This causes the posterior to change from (50)
to (51) resulting in a dramatic decrease in the logarithm of the 
posterior, which then asymptotically increases to zero as M → ∞. 
This behavior is shown in Fig. 2B.

More rich behavior can be seen in the case of N = 5 data 
points. The results again (Fig. 2C) depend on the relative positions 
of the data points with respect to one another. In this case the 
posterior probability switches between two types of behavior as 
the number of bins increase depending on whether the bin posi-
tions force two data points together in the same bin or separate 
them into two bins. The ultimate result is a ridiculous maximum a 
posteriori solution of 57 bins. Clearly, for a small number of data 
points, the mode depends sensitively on the relative positions of 
the samples in a way that is not meaningful. In these cases there 
are too few data points to model a density function.

With a larger number of samples, the posterior probability 
shows a well-defined mode indicating a well-determined optimal 
number of bins. In the general case of M > N where each of the N
data points is in a separate bin, we have

p(M|d, I) ∝
(

M

2

)N �
( M

2

)
�
(
N + M

2

) , (52)

which again results in a log posterior that asymptotically ap-
proaches zero as M → ∞. Fig. 2D demonstrates these two effects 
for N = 200. This also can be compared to the log posterior for 
1000 Gaussian samples in Fig. 1B.

5.2. Sufficient data

The investigation on the effects of small sample size in the pre-
vious section raises the question as to how many data points are 
needed to estimate the probability density function. The general 
shape of a healthy log posterior reflects a sharp initial rise to a 
well-defined peak, and a gradual fall-off as the number of bins 
M increases from one (e.g. Fig. 1B, Fig. 2D). With small sample 
sizes, however, one finds that the bin heights have large error bars 
(Fig. 3A) so that μi � σi , and that the log posterior is multi-modal 
(Fig. 3B) with no clear peak.

We tested our algorithm on data sets with 199 different sample 
sizes from N = 2 to N = 200. One thousand data sets were drawn 
from a Gaussian distribution for each value of N . The standard de-
viation of the number of bins obtained for these 1000 data sets at 
a given value if N was used as an indicator of the stability of the 
solution.
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Fig. 3. (A) An optimal density model (M = 19) for N = 30 data points sampled from a Gaussian distribution. The fact that the error bars on the bin probabilities are as large 
as the probabilities themselves indicates that this is a poor estimate. (B) The log posterior probability for the number of bins possesses no well-defined peak, and is instead 
reminiscent of noise. (C) This plot shows the standard deviation of the estimated number of bins M for 1000 data sets of N points, ranging from 2 to 200, sampled from a 
Gaussian distribution. The standard deviation stabilizes around σM = 2 bins for N > 150 indicating the inherent level of uncertainty in the problem. This suggests that one 
requires at least 150 data points to consistently perform such probability density estimates, and can perhaps get by with as few as 100 data points in some cases.
Fig. 3C shows a plot of the standard deviation of the number 
of bins selected for the 1000 data sets at each value of N . As we 
found above, with two data points, the optimal solution is always 
one bin giving a standard deviation of zero. This increases dramat-
ically as the number of data points increases, as we saw in our 
example with N = 5 and M = 57. This peaks around N = 15 and 
slowly decreases as N increases further. The standard deviation of 
the number of bins decreased to σM < 5 for N > 100, and stabi-
lized to σM � 2 for N > 150.

While 30 samples may be sufficient for estimating the mean 
and variance of a density function known to be Gaussian, it is 
clear that more samples are needed to reliably estimate the shape 
of an unknown density function. In the case where the data are 
described by a Gaussian, it would appear that at least 150 sam-
ples, are required to accurately and consistently infer the shape of 
a one-dimensional density function. By examining the shape of the 
log posterior, one can easily determine whether one has sufficient 
data to estimate the density function. In the event that there are 
too few samples to perform such estimates, one can either incor-
porate additional prior information or collect more data.

6. Digitized data

Due to the way that computers represent data, all data are 
essentially represented by integers [17]. In some cases, the data 
samples have been intentionally rounded or truncated, often to 
save storage space or transmission time. It is well-known that any 
non-invertible transformation, such as rounding, destroys informa-
tion. Here we investigate how severe losses of information due to 
rounding or truncation affects the OPTBINS algorithm.
When data are digitized via truncation or rounding, the digi-
tization is performed so as to maintain a resolution that we will 
denote by �x. That is, if the data set has values that range from 0 
to 1, and we represent these numbers with eight bits, the min-
imum resolution we can maintain is �x = 1/28 = 1/256. For a 
sufficiently large data set (in this example N > 256) the pigeonhole 
principle indicates that it will be impossible to have a situation 
where each datum is in its own bin when the number of bins is 
greater than a critical number, M > M�x , where

M�x = V

�x
, (53)

and V is the range of the data considered (see Fig. 4). Once 
M > M�x the number of populated bins P will remain unchanged 
since the bin width w for M > M�x will be smaller then the digi-
tization resolution, w < �x.

For all bin numbers M > M�x , there will be P populated 
bins with populations n1, n2, . . . , nP . This leads to a form for the 
marginal posterior probability for M (30) that depends only on 
the number of instances of each discrete value that was recorded, 
n1, n2, . . . , nP . Since these values do not vary for M > M�x , the 
marginal posterior can be expressed solely as a function of M

p(M|d, I) ∝
(

M

2

)N �
( M

2

)
�
(
N + M

2

) · 2N

∏P
p=1 �(np + 1

2 )

�
( 1

2

)P
, (54)

where the product over p is over populated bins only. Comparing 
this to (52), the function on the right-hand side asymptotically ap-
proaches a value greater than one so that its logarithm increases 
asymptotically to a value greater than zero.
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Fig. 4. N = 1000 data points were sampled from a Gaussian distribution N (0, 1). The top plots show (A) the estimated density function using optimal binning and (B) 
the relative log posterior, which exhibits a well-defined peak at M = 11 bins. The bottom plots reflect the results using the same data set after it has been rounded with 
�x = 0.1 to keep only the first decimal place. (C) There is no optimal binning as the algorithm identifies the discrete structure as being a more salient feature than the 
overall Gaussian shape of the density function. (D) The relative log posterior displays no well-defined peak, and in addition, for large numbers of M displays a monotonically 
increasing curve given by (52) that asymptotes to a positive value. This indicates that the data have been severely rounded.
As the number of bins M increases, the point is reached where 
the data can not be further separated; call this point Mcrit . In this 
situation, there are np data points in the pth bin and the posterior 
probability can be written as

p(M|d, I) ∝
(

M

2

)N �
( M

2

)
�
(
N + M

2

) ·
P∏

p=1

(2np − 1)!!, (55)

where !! denotes the double factorial [18]. For M > Mcrit , as M →
∞, the log posterior asymptotes to 

∑P
p=1 log((2np − 1)!!), which 

can be further simplified to

P∑
p=1

log((2np − 1)!!) = (P − N) log(2) +
P∑

p=1

2np−1∑
s=np

log s. (56)

This means that excessive truncation or rounding can be de-
tected by comparing the mode of log p(M|d, I) for M < Mcrit to 
(56) above. If the latter is larger, this indicates that the discrete 
nature of the data is a more significant feature than the general 
shape of the underlying probability density function (Fig. 4). When 
this is the case, a reasonable histogram model of the density func-
tion can still be obtained by adding a uniformly-distributed ran-
dom number, with a range defined by the resolution �x, to each 
datum point [17]. While this will produce the best histogram pos-
sible given the data, this will not recover the lost information.

7. Application to real data

It is important to evaluate the performance of an algorithm 
using real data. However, the greatest difficulty that such an eval-
uation poses is that the correct solution is unknown at best, and 
poorly-defined at worst. As a result, we must rely on our expec-
tations. In these three examples, we will examine the optimal 
solutions obtained using OPTBINS and compare them to the den-
sity models obtained with both fewer and greater numbers of 
bins. It is expected that the histograms with fewer number of 
bins will be missing some essential characteristics of the density 
function, while the histograms with a greater number of bins will 
exhibit random fluctuations that appear to be unwarranted. For 
more definitive results, the reader is directed to Section 4.1.

In Fig. 5A we show the results from a data set called ‘Abalone 
Data’ retrieved from the UCI Machine Learning Repository [22]. The 
data consists of abalone weights in grams from 4177 individuals 
[19]. The relative log posterior (left) shows a flat plateau that has 
maximum at M = 14 bins and slowly decreases thereafter. Given 
this relatively flat plateau, we would expect most bin numbers in 
this region to produce reasonable histogram models. Compared to 
M = 10 bins (left) and M = 20 bins (right), the optimal density 
model with M = 14 bins captures the shape of the density function 
best without exhibiting what appear to be irrelevant details due to 
random sampling fluctuations.

Fig. 5B shows a second data set from the UCI Machine Learning 
Repository [22] titled ‘Determinants of Plasma Retinol and Beta-
Carotene Levels’. This data set provides blood plasma retinol con-
centrations (in ng/ml) measured from 315 individuals [20]. The 
optimal number of bins for this data set was determined to be 
M = 9. Although a second peak appears in the relative log poste-
rior near M = 15, the rightmost density with 15 bins exhibits small 
random fluctuations suggesting that M = 9 is a better model.

Last, the Old Faithful data set is examined, which consists of 
222 measurements of inter-eruption intervals rounded to the near-
est minute [21]. This data is used extensively on the world wide 
web as an example of the difficulties in choosing bin sizes for 
histograms. There exists, in fact, a java applet developed by R. 
Webster West that allows one to interactively vary the bin size 
and observe the results in real time [23]. In Fig. 5D we plot the 
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Fig. 5. The OPTBINS algorithm is used to select the number of bins for three real data sets. The relative log posterior probability of each of the three data sets is displayed 
on the left where the optimal number of bins is the point at which the global maximum occurs (see drop lines). The center density function in each row represents the 
optimally-binned model. The leftmost density function has too few bins and is not sufficiently well-resolved, whereas the rightmost density function has too many bins 
and is beginning to highlight irrelevant features. (A) Abalone weights in grams from 4177 individuals [19]. (B) Blood plasma retinol concentration in ng/ml measured from 
315 individuals [20]. (C) The Old Faithful data set consisting of measurements of inter-eruption intervals rounded to the nearest minute [21]. In this data set, we added a 
uniformly distributed random number from −0.5 to 0.5 (see text). (D) This relative log posterior represents the Old Faithful inter-eruption intervals recorded to the nearest 
minute. Notice that the discrete nature of the data is a dominant feature as predicted by the results in the previous section. In this example, OPTBINS does more than 
choose the optimal number of bins, it provides a warning that the data has been severely rounded or truncated and that information has been lost.
relative log posterior for this data set. For large numbers of bins, 
the relative log posterior increases according to (55) as described 
in Section 6. This indicates that the discrete nature of the data 
(measured at a time resolution in minutes) is a more salient fea-
ture than the overall shape of the density function. One could have 
gathered more information by more carefully measuring the erup-
tion times on the order of seconds or perhaps tens of seconds.

It is not clear whether this missing information could affect 
the results of previous studies, but we can obtain a useful den-
sity function by adding a small uniformly distributed number to 
each sample [17] as discussed in the previous section. Since the 
resolution is in minutes, we add a number ranging from −0.5 to 
0.5 minutes. The result in Fig. 5C is a relative log posterior that has 
a clear maximum at M = 10 bins. A comparison to the M = 5 bin 
case and the M = 20 bin case again demonstrates that the number 
of bins chosen by OPTBINS results in a density function that cap-
tures the essential details and neglects the irrelevant details. In this 
case, our method provides additional valuable information about 
the data set by indicating that the discrete nature of the data was 
more relevant the underlying density function. This implies that a 
sampling strategy involving higher temporal resolution would have 
provided more information about the inter-eruption intervals.
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Fig. 6. 10000 samples were drawn from a two-dimensional Gaussian density to demonstrate the optimization of a two-dimensional histogram. (A) The relative logarithm of 
the posterior probability is plotted as a function of the number of bins in each dimension. The normalization constant has been neglected in this plot, resulting in positive 
values of the log posterior. (B) This plot shows the relative log posterior as a contour plot. The optimal number of bins is found to be 12 × 14. (C) The optimal histogram for 
this data set. (D) The histogram determined using Stone’s method has 27 × 28 bins. This histogram is clearly sub-optimal since it highlights random variations that are not 
representative of the density function from which the data were sampled.
8. Multi-dimensional histograms

In this section, we demonstrate that our method can be ex-
tended naturally to multi-dimensional histograms. We begin by 
describing the method for a two-dimensional histogram. The 
constant-piecewise model h(x, y) of the two-dimensional density 
function f (x, y) is

h(x, y; Mx, M y)

= M

V

Mx∑
j=1

M y∑
k=1

π j,k �(x j−1, x, x j)�(yk−1, y, yk), (57)

where M = MxM y , V is the total area of the histogram, j indexes 
the bin labels along x, and k indexes them along y. Since the π j,k

all sum to unity, we have M −1 bin probability density parameters 
as before, where M is the total number of bins. The likelihood of 
obtaining a datum point dn from bin ( j, k) is still simply

p(dn|π j,k, Mx, M y, I) = M

V
π j,k. (58)

The previous prior assignments result in the posterior probability

p(π, Mx, M y|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1 )M

Mx∏ M y∏
π

n j,k− 1
2

j,k , (59)

2 j=1 k=1
where πMx,M y is 1 minus the sum of all the other bin probabilities. 
The order of the bins in the marginalization does not matter, which 
gives a result similar in form to the one-dimensional case

p(Mx, M y|d, I) ∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

∏Mx
j=1

∏M y

k=1 �(n j,k + 1
2 )

�(N + M
2 )

, (60)

where M = MxM y .
For a D-dimensional histogram, the general result is

p(M1, · · · , MD |d, I)

∝
(

M

V

)N �
( M

2

)
�
( 1

2

)M

∏M1
i1=1 · · ·∏MD

iD=1 �(ni1,...,iD + 1
2 )

�(N + M
2 )

, (61)

where Mi is the number of bins along the ith dimension, M is 
the total number of bins, V is the D-dimensional volume of the 
histogram, and ni1,...,iD indicates the number of counts in the bin 
indexed by the coordinates (i1, . . . , iD). Note that the result in (32)
can be used directly for a multi-dimensional histogram simply by 
relabeling the multi-dimensional bins with a single index.

Fig. 6 demonstrates the procedure on a data set sampled from 
a two-dimensional Gaussian. In this example, 10000 samples were 
drawn from a two-dimensional Gaussian density. Fig. 6A shows the 
relative logarithm of the posterior probability plotted as a func-
tion of the number of bins in each dimension. The same surface 
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Table 1
Summary of the histogram binning performance for N = 500 for data sampled from distributions consisting of the specified Number of Bins. For each algorithm, the fraction 
of the correct number of bins (cor) is listed as well as the mean (mean) number of bins obtained for the 100 trials. At the bottom, the overall fraction of correct number of 
bins (cor) is listed along with the root mean square error (rms) in the number of bin estimates for all 10000 trials. The best scores are highlighted in boldface font.

Number 
of bins

OPTBINS AIC BIC Scott Stone

cor mean cor mean cor mean cor mean cor mean

1 1 1 0.58 2.8 0.99 1 0 26.8 0.59 2.7
2 1 2 0.62 3.9 0.78 1.9 0 17.2 0.64 4.6
3 1 3 0.71 4.8 0.85 3 0 10.9 0.66 4.9
4 1 4 0.77 6.1 0.82 3.9 0.02 7.5 0.76 6.2
5 1 5 0.7 8.3 0.86 4.8 0.27 6.2 0.68 8.3
6 0.25 5.3 0.71 8.6 0.81 5.9 0.14 4.7 0.75 8.7
7 0.76 6.5 0.67 11 0.85 6.7 0.03 3.7 0.68 10.5
8 0.29 7.3 0.7 11.1 0.77 7.3 0.01 3.3 0.75 10.4
9 0.84 8.7 0.8 10.8 0.77 8.4 0 2.7 0.7 12
10 1 10 0.77 13.1 0.72 9.2 0 2.4 0.74 12.9
20 0.93 19.9 0.78 23.2 0.6 15.7 0 1 0.78 24.2
25 0.59 24.6 0.7 28.6 0.43 16.4 0 0.9 0.67 29
30 0.62 29.6 0.75 32.9 0.32 16.1 0 0.2 0.73 32.1
40 0.85 39.6 0.65 43.3 0.05 8.9 0 0 0.63 43.2
50 0.58 47.9 0.62 50.8 0 5.7 0 0 0.57 50.6
60 0.07 57.2 0.55 59.9 0 4.2 0 0 0.53 58.4
70 0.49 65.9 0.45 65.4 0 3.3 0 0 0.36 61
80 0.08 76.3 0.38 71.4 0 1.9 0 0 0.33 67.1
90 0.52 89.5 0.38 77.8 0 2 0 0 0.35 71.8
100 0.55 98.7 0.24 76.3 0 1.6 0 0 0.16 68.7

cor rms cor rms cor rms cor rms cor rms
overall 0.48 2.34 0.59 14.52 0.21 54.98 0.005 58.17 0.54 18.07
is displayed as contour plot in Fig. 6B, where we find the op-
timal number of bins to be 12 × 14. Fig. 6C shows the optimal 
two-dimensional histogram model. Note that the modeled density 
function is displayed in terms of the number of counts rather than 
the probability density, which can be easily computed using (45)
with error bars computed using (47). In Fig. 6D, we show the his-
togram obtained using Stone’s method, which results in an array 
of 27 × 28 bins. This model consists of approximately four times 
as many bins, and as a result, random sampling variations become 
visible.

9. Comparison to other techniques

We now compare the OPTBINS method, also known as the 
Knuth method, with several other popular methods, such as the 
Akaike Information Criterion (AIC) [24], the Bayesian Information 
Criterion (BIC) [25,26], Scott’s Rule (3) [1,2], and Stone’s Rule (4)
[4]. Since Freedman and Diaconis’ (F&D) method [3] has the same 
functional form as Scott’s Rule (3), the results using F&D are not 
presented here. The AIC method, applied to histograms in [27], bal-
ances the logarithm of the likelihood of the model against the 
number of model parameters. The number of bins is chosen to 
maximize

AIC(M) = 2 log p(dn|πk, M, I) − 2M, (62)

where log p(dn|πk, M, I) is the logarithm of the likelihood (10). The 
BIC method [26] results in a similar weighting

B IC(M) = 2 log p(dn|πk, M, I) − M log(N), (63)

which is also maximized.
To objectively evaluate the performance of each of these al-

gorithms, they need to be tested against data sets sampled from 
distributions for which the correct number of bins is known. For 
this reason, testing is not only limited to synthetic data, but also to 
data that was sampled from a probability density that is piecewise 
uniform with equal width bins. We considered such probability 
densities with the number of bins ranging from M = 1 to 100. The 
probability of each bin of the trial probability density function was 
selected to be proportional to a randomly (uniformly) selected in-
tegers ranging from one to 100. Experiments were performed so 
that there were 100 trials for each value M of the number of bins, 
which when considering the varying numbers of bins, amounted to 
100 × 100 = 10000 trials in total. There were no constraints placed 
on the probability of a bin given the probabilities of the bins ad-
jacent to it. For this reason, in some trials it is possible that there 
exist adjacent bins with equal bin probabilities.

Experiments were performed with N = 500, 1000, and 10000
data points. It is important to note that in the case of N = 500 data 
points, the bins are typically well populated for small numbers 
of bins, M , since the average number of data points per bin will 
be proportional to N/M . However, for large numbers of bins, such 
as M > 10, the number of samples per bin can become relatively 
small, even in relatively probable bins, making accurate inferences 
difficult. The situation improves for large numbers of bins as the 
number of samples, N , increases. For this reason, it is to be ex-
pected that the performances of the algorithms will change with 
an increasing number N of data points.

The results for N = 500, 1000, and 10000 are listed in Tables 1, 
2, and 3, respectively. In all three cases, the proposed OPTBINS
method (Knuth) has the lowest overall root mean square error in 
the bin number estimates. For datasets sampled from distributions 
with a small number of bins, the OPTBINS method almost always 
estimated the number of bins correctly. Specifically, in the case 
of N = 500, the OPTBINS method was the only method to cor-
rectly identify the number of bins 100% of the time for M = 1
to 5. The situation improved for increasing N for small numbers of 
bins ranging from M = 1 to 8, or 9.

Overall, for N = 500 data points, AIC correctly identified the 
number of bins correctly 59% of the time. The Stone method came 
in second with a 54% success rate. While the OPTBINS method 
came in third in terms of obtaining the correct number of bins 
48% of the time, it came in first in terms of the root-mean-square 
(RMS) error, which was only 2.34. The other methods had a greater 
RMS error by an order of magnitude.

For N = 1000 data points, the OPTBINS method correctly es-
timated the number of bins 58% of the time, which again came 
in third behind AIC and Stone. However, the OPTBINS RMS er-
ror was reduced to 1.43, which was at least 8 times better than 
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Table 2
Summary of the histogram binning performance for N = 1000 for data sampled from distributions consisting of the specified Number of Bins. For each algorithm, the fraction 
of the correct number of bins (cor) is listed as well as the mean (mean) number of bins obtained for the 100 trials. At the bottom, the overall fraction of correct number of 
bins (cor) is listed along with the root mean square error (rms) in the number of bin estimates for all 10000 trials. The best scores are highlighted in boldface font.

Number 
of bins

OPTBINS AIC BIC Scott Stone

cor mean cor mean cor mean cor mean cor mean

1 1 1 0.65 2.6 1 1 0 33.8 0.65 2.5
2 1 2 0.71 3.9 0.84 2.4 0 23.4 0.67 4.2
3 1 3 0.73 5.2 0.91 3.2 0 14 0.71 5.3
4 1 4 0.79 6.4 0.89 4 0 10 0.75 6
5 0.92 4.9 0.83 6.7 0.98 5.1 0.13 7.6 0.81 7.1
6 1 6 0.82 8.7 0.9 5.9 0.22 5.7 0.84 8.6
7 1 7 0.83 9.8 0.93 7.5 0.06 4.8 0.82 9.8
8 1 8 0.86 10.1 0.92 8 0 4.1 0.83 10.8
9 0.54 8.5 0.85 11.2 0.92 8.9 0 3.6 0.84 11.6
10 0.99 10 0.83 13.4 0.92 10 0 3.1 0.83 13
20 0.99 20 0.87 23.3 0.88 19.9 0 1.1 0.86 23
25 0.25 24.3 0.94 26.3 0.93 24.6 0 1 0.94 26.2
30 0.36 28.7 0.86 33.2 0.81 27.2 0 0.9 0.84 33.1
40 0.35 38.1 0.85 43.3 0.63 31 0 0 0.87 42.1
50 0.82 49.5 0.79 55.1 0.33 26.6 0 0 0.79 53.9
60 0.63 59.3 0.81 62.4 0.19 22.3 0 0 0.8 62.3
70 0.4 68.2 0.79 71.2 0.03 13 0 0 0.74 71.1
80 0.39 76.3 0.74 80.6 0 8.6 0 0 0.72 80.6
90 0.15 89.2 0.73 90 0 5.8 0 0 0.7 87.1
100 0.73 98.9 0.72 97.6 0 4.6 0 0 0.66 94.8

cor rms cor rms cor rms cor rms cor rms
overall 0.58 1.43 0.80 8.88 0.43 48.77 0.004 58.19 0.79 8.81

Table 3
Summary of the histogram binning performance for N = 10000 for data sampled from distributions consisting of the specified Number of Bins. For each algorithm, the 
fraction of the correct number of bins (cor) is listed as well as the mean (mean) number of bins obtained for the 100 trials. At the bottom, the overall fraction of correct 
number of bins (cor) is listed along with the root mean square error (rms) in the number of bin estimates for all 10000 trials. The best scores are highlighted in boldface 
font.

Number 
of bins

OPTBINS AIC BIC Scott Stone

cor mean cor mean cor mean cor mean cor mean

1 1 1 0.63 2.6 1 1 0 73.6 0.62 2.7
2 1 2 0.65 4.7 0.97 2 0 49.2 0.67 3.5
3 1 3 0.79 5.3 0.99 3 0 31.5 0.84 4.5
4 0.78 3.8 0.78 9.4 0.97 4.2 0 22.7 0.79 7.3
5 1 5 0.85 7.3 1 5 0 17 0.87 6
6 1 6 0.89 8.1 0.99 6 0 13.5 0.93 6.5
7 0.66 6.7 0.91 9.3 0.99 7.6 0.03 11.8 0.91 9.1
8 1 8 0.92 10.6 0.99 8 0.16 9.7 0.93 9.7
9 1 9 0.91 12.6 1 9 0.2 8.1 0.91 11.5
10 0.34 9.3 0.95 12 0.99 10.2 0.04 7.3 0.93 11.6
20 0.46 19.5 0.95 23.2 1 20 0 3.3 0.97 21.6
25 0.93 24.9 0.96 27.4 0.99 25.3 0 2.5 0.97 26.5
30 0.46 28.4 0.97 32 1 30 0 2 0.99 30.7
40 0.94 39.9 0.98 40.8 1 40 0 1.2 0.99 40.4
50 0.78 49.6 0.97 51.5 1 50 0 1 0.97 51.5
60 0.97 59.9 0.99 60.4 1 60 0 1 0.99 60.4
70 0.66 69 0.97 70.7 0.98 70.1 0 0.9 0.97 70.7
80 0.47 78.9 0.98 80.3 0.98 80.1 0 0.2 0.98 80.3
90 0.62 89.2 1 90 1 90 0 0 1 90
100 0.73 99.7 0.99 100 0.99 100 0 0 0.99 100

cor rms cor rms cor rms cor rms cor rms
overall 0.61 1.26 0.96 7.90 0.99 2.62 0.004 58.32 0.96 6.25
AIC and Stone, and about 50 times better than BIC and Scott. At 
N = 1000, the performance of both AIC and BIC was observed to 
improve significantly for numbers of bins less than 30.

Last, for N = 10000 data points, BIC took the lead as the 
method that most often obtained the correct number of bins with 
an overall accuracy of 99%. In contrast, the OPTBINS method cor-
rectly estimated the number of bins 61% of the time, which was 
not as good as both AIC and Stone, which were correct 96% of 
the time. That being said, the OPTBINS method still exhibited the 
lowest RMS error, of 1.26, in its bin estimates.

In summary, for small numbers of bins, the OPTBINS method 
provides correct estimates of bin numbers more reliably than the 
other methods. In all cases, the OPTBINS method provides esti-
mates that minimize the RMS error. However, in terms of general 
accuracy, both AIC and the Stone method work best for N ≤ 1000
data points. For a large number of data points, N = 10000, BIC be-
gins to dominate in terms of accuracy for all numbers of bins. The 
overall benefits of the OPTBINS method is that it exhibits high 
accuracy for small numbers of bins, which makes it good for test-
ing uniformity, and generally provides estimates that minimize the 
RMS error.

10. Algorithmic implementations

The basic OPTBINS algorithm takes a one-dimensional data set 
and performs a brute force exhaustive search that computes the 
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relative log posterior for all the bin values from 1 to M . An ex-
haustive search will be slow for large data sets that require large 
numbers of bins, or multi-dimensional data sets that have multiple 
bin dimensions. In the case of one-dimensional data, the execution 
time of the Matlab implementation (see Appendix) on a Dell Lat-
itude D610 laptop with an Intel Pentium M 2.13 GHz processor 
bilinear in both the number of data points N and the number of 
bins M to consider. The execution time can be estimated by the 
approximate formula:

T = 0.0000171N · M − 0.00026N − 0.0026M, (64)

where T is the execution time in seconds. For instance, for N =
25000 data values and M = 500 bins to consider from M = 1 to 
M = 500, the observed time was 194 seconds, which is close to 
the approximate time of 206 seconds. The algorithm is much faster 
for small numbers of data points. For N = 1000 data points and 
M = 50 bins, the execution time is approximately 0.5 seconds.

There are many techniques that are faster than an exhaustive 
search. For example, sampling techniques, such as nested sampling 
[28], are particularly efficient given that there are a finite number 
of bins to consider. At this point we have implemented the OPT-
BINS model and posterior in the nested sampling framework. The 
code has been designed to provide the user flexibility in choosing 
the mode or the mean, which may be more desirable in cases of 
extremely skewed posterior probabilities. Such a sampling method 
has the distinct advantage that the entire space is not searched. 
Moreover, we have added code that stores up to 10000 log poste-
rior results from previously examined numbers of bins and allows 
us to access them later, resulting in far fewer evaluations, espe-
cially in high-dimensional spaces.

The computational bottleneck lies in the binning algorithm that 
must bin the data in order to compute the factors for the log pos-
terior. We have a Matlab mex file implementation, which is es-
sentially compiled C code, that speeds up the evaluations an order 
of magnitude. However, the execution time is still constrained by 
this step, which depends on both the number data points and the 
number of bins. The nested sampling algorithm limits the search 
space by choosing the maximum number of bins in any dimen-
sion to be 5N1/3, which on the average is an order of magnitude 
greater than the number of bins suggested by Scott’s Rule (3) Since 
in one-dimension the execution time of the brute force algorithm 
is bilinear in N and M , the execution time should go as

T ime ∝ N · M ∼ M
D+3

3 . (65)

We have verified this theoretical estimate with tests that show 
times increasing as M1.4 for one-dimensional data, M1.6 for two-
dimensional data, and M2.0 for three-dimensional data, which 
compare reasonably well with the predicted exponents of 4/3, 
5/3, and 7/3 for one, two and three dimensions respectively. The 
advantage of the nested sampling algorithm over an exhaustive 
search arises from a significant reduction in the number of calls 
to the binning algorithm. This is both due to the fact that nested 
sampling does not search the entire space, and the fact that the log 
probabilities of previous computations are stored for easy lookup 
in the event that a model with the particular number of bins is 
visited multiple times. In one-dimension, nested sampling visits 
the majority of the bins and does not significantly outperform an 
exhaustive search. However in two and three dimensions, nested 
sampling visits successively fewer bin configurations, which results 
in remarkable speed-ups over the exhaustive search algorithm. For 
example, in three-dimensions, exhaustive search takes 2822 sec-
onds for 2000 data points; whereas nested sampling takes only 
480 seconds.
The exhaustive search OPTBINS algorithm and the nested 
sampling implementation and supporting code in Matlab can 
be downloaded from: https://github .com /khknuth /histo. The OPT-
BINS algorithm has been implemented in Mathematica’s Density-
Histogram function as the Knuth Binning Method. It has also been 
coded into Python for AstroML (http://astroml .github .com/) un-
der the function name knuth_nbins where it is referred to as 
Knuth’s Rule [29,30]. AstroML is a freely available Python repository 
for tools and algorithms commonly used for statistical data analy-
sis and machine learning in astronomy and astrophysics.

11. Discussion

The optimal binning algorithm, OPTBINS, also known as the 
Knuth method, presented in this paper relies on finding the mode 
of the marginal posterior probability of the number of bins in a 
piecewise-constant density function model of the distribution from 
which the data were sampled. This posterior probability originates 
as a product of the likelihood of the density parameters given the 
data and the prior probability of those same parameter values, 
where the prior probability is a non-informative prior. As the num-
ber of bins increases, the prior probability (14), which depends on 
the inverse of the square root of the product of the bin probabili-
ties, tends to increase. Meanwhile, the joint likelihood (10), which 
is a product of the bin probabilities of the individual data tends to 
decrease.2 Since the posterior is a product of these two functions, 
the maximum of the posterior probability occurs at a point where 
these two opposing factors are balanced. This interplay between 
the likelihood and the prior probability effectively implements Oc-
cam’s razor by selecting the most simple model that best describes 
the data.

We have studied this algorithm’s ability to model the underly-
ing density by comparing its behavior to several other popular bin 
selection techniques: Akaike model selection criterion (AIC) [24], 
the Bayesian Information Criterion (BIC) [25,26], Stone’s Rule [4], 
and Scott’s rule [1,2], which is similar to the rule proposed by 
Freedman and Diaconis [3]. In terms of general accuracy, both AIC 
and the Stone method work best for N ≤ 1000 data points. For a 
large number of data points, N = 10000, BIC began to dominate 
in terms of accuracy for all numbers of bins. The OPTBINS algo-
rithm exhibited the highest accuracy for small numbers of bins, 
which makes it good for testing uniformity, and generally provided 
estimates that minimize the RMS error.

The utility of this algorithm was also demonstrated by applying 
it to three real data sets. In two of the three cases the algorithm 
recommended reasonable bin numbers. In the third case involving 
the Old Faithful data set it revealed that the data were exces-
sively rounded. That is, the discrete nature of the data was a more 
salient feature than the shape of the underlying density function. 
To obtain a reasonable number of bins in this case, one need only 
add sufficiently small random numbers to the original data points. 
However, in the example of the Old Faithful data set OPTBINS in-
dicates something more serious. Excessive rounding has resulted 
in data of poor quality and this may have had an impact on pre-
vious studies. The fact that the OPTBINS algorithm can identify 
data sets where the data have been excessively rounded may be of 
benefit in identifying problem data sets as well as selecting an ap-
propriate degree of rounding in cases where economic storage or 
transmission are an issue [31].

In addition to these applications, OPTBINS already has been 
used to generate histograms in several other published studies. 
One study by Nir et al. [32] involved making histograms of ra-
tional numbers, which led to particularly pathological ‘spike and 

2 This is the reverse from what one usually expects where increasing the number 
of parameters decreases the prior and increases the likelihood.

https://github.com/khknuth/histo
http://astroml.github.com/
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void’ distributions. In this case, there is no maximum to the log 
posterior. However, adding small random numbers to the data, as 
recommended by Bayman and Broadhurst [17], was again shown 
to be an effective remedy.

Our algorithm also can be readily applied to multi-dimensional 
data sets, which we demonstrated with a two-dimensional data 
set. In practice, we have been applying OPTBINS to three-
dimensional data sets with comparable results. We have also im-
plemented a nested sampling algorithm that enables the user to 
select either the most probable number of bins (mode) or the 
mean number of bins. The nested sampling implementation dis-
plays significant speed-up over the exhaustive search algorithm, 
especially in the case of higher dimensions.

It should be noted that we are working with a piecewise-
constant model of the density function, and not a histogram per 
se. The distinction is subtle, but important. Given the full poste-
rior probability for the model parameters and a selected number 
of bins, one can estimate the mean bin probabilities and their as-
sociated standard deviations. This is extremely useful in that it 
quantifies uncertainties in the density model, which can be used 
in subsequent calculations. In this paper, we demonstrated that 
with small numbers of data points the magnitude of the error bars 
on the bin heights is on the order of the bin heights themselves. 
Such a situation indicates that too few data exist to infer a density 
function. This can also be determined by examining the marginal 
posterior probability for the number of bins. In cases where there 
are too few data points, the posterior will not possess a well-
defined mode. In our experiments with Gaussian-distributed data, 
we found that approximately 150 data points are needed to accu-
rately estimate the density model when the functional form of the 
density is unknown.

We have made some simplifying assumptions in this work. 
First, the data points themselves are assumed to have no associ-
ated uncertainties. Second, the endpoints of the density model are 
defined by the extreme data values, and are not allowed to vary 
during the analysis. Third, we use the marginal posterior to select 
the optimal number of bins and then use this value to estimate 
the mean bin heights and their variance. This neglects uncertainty 
about the number of bins, which means that the variance in the 
bin heights is underestimated.

Equal width bins can be very inefficient in describing multi-
modal density functions (as in Fig. 1G.) In such cases, variable 
bin-width models such as the maximum likelihood estimation in-
troduced by Wegman [6], Bayesian partitioning [7], Bayesian Blocks 
[8], Bayesian bin distribution inference [9], Bayesian regression of 
piecewise constant functions [10], and Bayesian model determi-
nation through techniques such as reversible jump Markov chain 
Monte Carlo [33] may be more appropriate options in certain re-
search applications.

For many applications, OPTBINS efficiently delivers histograms 
with a number of bins that provides an appropriate depiction of 
the shape of the density function given the available data while 
minimizing the appearance of random fluctuations. While this al-
gorithm produces the most probable piecewise-constant model of 
the density function, it is not assured that parameter estimates 
based on this density model will be optimal. This simply due to 
the way in which probability densities transform under changes of 
variables. Given the most probable value x̂ of parameter x, it is not 
always true that y̌ = f (x̂) will be the most probable value of the 
parameter y = f (x). For this reason, parameters derived from this 
optimal density model are not guaranteed to be optimal.

A Matlab implementation of the basic algorithm is given in 
the Appendix and the OPTBINS package can be downloaded 
from https://github .com /khknuth /histo. A Python implementation 
is available from AstroML (http://astroml .github .com/) under the 
function name knuth_nbins where it is referred to as Knuth’s 
Rule [29]. Last, this algorithm has been implemented in Mathe-
matica’s DensityHistogram function as the Knuth Binning Method.
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Appendix. Matlab code

% OPTBINS finds the optimal number of bins for a one-dimensional
% data set using the posterior probability for the number of bins
% This algorithm uses a brute-force search trying every possible
% bin number in the given range. This can of course be improved.
% Generalization to multidimensional data sets is straightforward.
%
% Usage:
% optM = OPTBINS(data,maxM);
% Where:
% data is a (1,N) vector of data points
% maxM is the maximum number of bins to consider
%
% Cite: K.H. Knuth. Optimal data-based binning for histograms
% and histogram-based probability density models, Digital Signal
% Process. (2019) https://10.1016/j.dsp.2019.102581

function optM = OPTBINS(data,maxM)

if size(data)>2 | size(data,1)>1
error(’data dimensions must be (1,N)’);

end
N = size(data,2);

% Simply loop through the different numbers of bins
% and compute the posterior probability for each.
logp = zeros(1,maxM);
for M = 1:maxM

n = hist(data,M); % Bin the data (equal width bins here)
part1 = N*log(M) + gammaln(M/2) - gammaln(N+M/2);
part2 = - M*gammaln(1/2) + sum(gammaln(n+0.5));
logp(M) = part1 + part2;

end

[maximum, optM] = max(logp);
return;

https://github.com/khknuth/histo
http://astroml.github.com/
http://exploringdata.net/datasets.htm
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