Bayesian Data Analysis (PHY/CSI/INF 451/551) HW\#2w

1. Independent Pair of Fair 6-Sided Dice.

Consider an independent pair of fair 6 -sided dice with sides indexed by i and j.
a. Since they are independent, how does $p(i \mid j, I)$ relate to $p(i \mid I)$?
b. What is the probability of rolling $\mathrm{i}=2$ on the first 6 -sided die? That is, what is $\mathrm{p}(\mathrm{i}=2 \mid \mathrm{I})$?
c. What quantity does $p(i=2, j=4 \mid I)$ represent? And what is its value?
d. What is the average value (also called the expected value) of i ?
e. Is it possible to ever observe this expected value? Why or why not?
f. What is the expected value of $i+j$?
g. What is the most probable value of $i+j$?
2. Imagine that we have a pair of six-sided dice that are attached to one another with a string. Below is a partially-filled in table of the probabilities for rolling different values indexed by i and j.

$P(i, j \mid I)$	$j=1$	$j=2$	$j=3$	$j=4$	$j=5$	$j=6$
$i=1$	0	0	0	0	0	0
$i=2$	0		$\frac{2}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	0
$i=3$	0	$\frac{2}{36}$	$\frac{4}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	0
$i=4$	0	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{4}{36}$	$\frac{2}{36}$	0
$i=5$	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{4}{36}$	0
$i=6$	0	0	0	0	0	0

a. Fill in the missing entry in the table above.
b. What is the expected value of $i+j$?
c. What is the probability $p(i \mid I)$ for all values of i ?
$p(i=1 \mid I)=$
$p(i=2 \mid I)=$
$p(i=3 \mid I)=$
$p(i=4 \mid I)=$
$p(i=5 \mid I)=$
$p(i=6 \mid I)=$
d. What is the expected value of i ?
3. In the problem \#1, we found that $p(i \mid j, I)=p(i \mid I)$ when i and j are independent.

Prove (algebraically using the sum and/or the product rules) that if $p(x, y \mid I)=p(x \mid I) p(y \mid I)$ then $p(x \mid y, I)=p(x \mid I)$ meaning that if x and y are independent, then you can just drop any conditioning of x on y.
4. Rolling 6's.
a. Imagine that you have one set of 6 six-sided dice. Calculate the probability that you will roll at least one 6 if you roll all six dice.
b. Consider that you have two sets of $\mathbf{6}$ six-sided dice (12 dice total). Calculate the probability that you will roll at least two 6 's if you roll all 12 dice.
c. Consider that you have three sets of 6 six-sided dice (18 dice total). Calculate the probability that you will roll at least three 6 's if you roll all 18 dice.
d. Are the probabilities in parts a-c equal? Why or why not?

