Bayesian Data Analysis (PHY/CSI/INF 451/551) HW#2w

1. Independent Pair of Fair 6-Sided Dice. Consider an independent pair of fair 6-sided dice with sides indexed by i and j.
a. Since they are independent, how does p(i \mid j, I) relate to p(i \mid I) ?
b. What is the probability of rolling i=2 on the first 6-sided die? That is, what is p(i = $2 \mid I$)?
c. What quantity does $p(i = 2, j = 4 \mid I)$ represent? And what is its value?
d. What is the average value (also called the expected value) of i?
e. Is it possible to ever observe this expected value? Why or why not?
f. What is the expected value of i+j ?
g. What is the most probable value of i+j?

2. Imagine that we have a pair of six-sided dice that are attached to one another with a string. Below is a partially-filled in table of the probabilities for rolling different values indexed by i and j.

P(i,j I)	j = 1	j = 2	j = 3	j = 4	<i>j</i> = 5	<i>j</i> = 6
i = 1	0	0	0	0	0	0
i = 2	0		2	2	1	0
			36	36	36	
i = 3	0	2	4	1	2	0
		36	36	36	36	
i = 4	0	2	1	4	2	0
		36	36	36	36	
i = 5	0	1	2	2	4	0
		36	36	36	36	
i = 6	0	0	0	0	0	0

- a. Fill in the missing entry in the table above.
- b. What is the expected value of i+j?
- c. What is the probability $p(i \mid I)$ for all values of i?

$$p(i = 1 | I) =$$

$$p(i = 2 | I) =$$

$$p(i = 3 | I) =$$

$$p(i = 4 | I) =$$

$$p(i=5\mid I)=$$

$$p(i = 6 | I) =$$

d. What is the expected value of i?

3. In the problem #1, we found that $p(i \mid j, I) = p(i \mid I)$ when i and j are independent.
Prove (algebraically using the sum and/or the product rules) that if $p(x,y\mid I)=p(x\mid I)$ then $p(x\mid y,I)=p(x\mid I)$ meaning that if x and y are independent, then you can just drop any conditioning of x on y .
4. Rolling 6's. a. Imagine that you have one set of 6 six-sided dice. Calculate the probability that you will roll at least one 6 if you roll all six dice.
b. Consider that you have two sets of 6 six-sided dice (12 dice total). Calculate the probability that you will roll at least two 6's if you roll all 12 dice.
c. Consider that you have three sets of 6 six-sided dice (18 dice total). Calculate the probability that you will roll at least three 6's if you roll all 18 dice.
d. Are the probabilities in parts a-c equal? Why or why not?