Bayesian Data Analysis (PHY/CSI/INF 451/551)
 HW\#3p

1. Generate a vector of 1000 uniformly-distributed samples (numbers between zero and one), and plot them in a histogram to verify that they are uniformly distributed.
2. Obtain 100 uniformly-distributed samples between 0.3 and 0.5 and plot their distribution in a histogram.
3. Use the MATLAB function randn to generate 1000 normally distributed samples with zero mean and a standard deviation of one. Plot their distribution in a histogram.
4. The normal distribution, also known as a Gaussian distribution, is a bell-shaped curve. Mathematically, the distribution is
$P(x \mid \mu, \sigma, I)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$.
Plot the Gaussian curve (for $\mu=0$ and $\sigma=1$) over the histogram above (\#3), showing both results in the same figure, and show that the histogram indeed follows the Gaussian distribution.
5. Write code to run the following simulation. Define, and plot, a rectangle going from $x=0$ to $x=4$ on the x-axis and from $y=0$ to $y=4$ on the y-axis. Define, and plot, a function that has the following behavior

$$
p(x)=\left\{\begin{array}{lll}
1 & \text { for } & 0 \leq x<1 \\
2 & \text { for } & 1 \leq x<2 \\
3 & \text { for } & 2 \leq x<3 \\
4 & \text { for } & 3 \leq x<4
\end{array}\right.
$$

Next sample 1000 points uniformly distributed within this rectangle. You can do this by uniformly sampling the x coordinates of the points in the range $0 \leq x<4$, and the same for the y-coordinates.

Plot these 1000 points on the same figure, coloring the points above the staircase function $p(x)$ red, and the ones below $p(x)$ blue.

Last, take the blue samples, the ones below the function $p(x)$, and on a separate figure make a histogram of their x values. Show that this histogram is the staircase function $p(x)$. Note that you have ignored (rejected) the red samples that lie above the function $p(x)$.

This technique allows you to draw samples with any distribution $p(x)$!

EXTRA CREDIT

Go through \#5 again and try another (your choice) function for $p(x)$, and include the two figures (rectangle with $p(x)$ and samples AND the histogram of those samples) in your homework for extra credit.

